Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T00:47:18.981Z Has data issue: false hasContentIssue false

Section II - Botulinum Toxin Therapy

Published online by Cambridge University Press:  31 May 2018

Dirk Dressler
Affiliation:
Hannover Medical School
Eckart Altenmüller
Affiliation:
Hochschule für Musik, Theater und Medien, Hannover
Joachim K. Krauss
Affiliation:
Hannover Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Careta, MF, Delgado, L and Patriota, R, 2015. Report of allergic reaction after application of botulinum toxin. Aesthet Surg J. 35: NP102–NP105.CrossRefGoogle ScholarPubMed
Eisele, KH, Fink, K, Vey, M and Taylor, HV, 2011. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon. 57: 555565.Google Scholar
Elston, JS and Russell, RW, 1985. Effect of treatment with botulinum toxin on neurogenic blepharospasm. Br Med J (Clin Res Ed). 290: 18571859.CrossRefGoogle ScholarPubMed
Fujinaga, Y, Sugawara, Y and Matsumura, T, 2013. Uptake of botulinum neurotoxin in the intestine. Curr Top Microbiol Immunol. 364: 4559.Google ScholarPubMed
Glogau, R, Blitzer, A, Brandt, F, Kane, M, Monheit, GD and Waugh, JM, 2012. Results of a randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of a botulinum toxin type A topical gel for the treatment of moderate-to-severe lateral canthal lines. J Drugs Dermatol. 11: 3845.Google Scholar
Kamin, W, Staubach, P, Klar-Hlawatsch, B and Knuf, M, 2006. Anaphylaxis after vaccination due to hypersensitivity to gelatin. Klin Padiatr. 218: 9294.CrossRefGoogle ScholarPubMed
Kim, BJ, Kwon, HH, Park, SY, et al., 2014. Double-blind, randomized non-inferiority trial of a novel botulinum toxin A processed from the strain CBFC26, compared with onabotulinumtoxin A in the treatment of glabellar lines. J Eur Acad Dermatol Venereol. 28: 17611767.CrossRefGoogle ScholarPubMed
Masuyer, G, Chaddock, JA, Foster, KA and Acharya, KR, 2014. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol. 54: 2751.CrossRefGoogle ScholarPubMed
Pickett, A, 2013. Historical aspects of botulinum toxin used clinically: part I – is that the right serotype? The Botulinum J. 2: 176.CrossRefGoogle Scholar
Pickett, A, 2015. Historical aspects of botulinum toxin used clinically: part II: overcoming resistance. The Botulinum J. doi: https://doi.org/10.1504/TBJ.2015.078134.Google Scholar
Scott, AB, Rosenbaum, A and Collins, CC, 1973. Pharmacologic weakening of extraocular muscles. Invest Ophthalmol. 12: 924927.Google ScholarPubMed

References

Antonucci, F, Rossi, C, Gianfranceschi, L, Rossetto, O, Caleo, M (2008) Long-distance retrograde effects of botulinum neurotoxin. A J Neurosci 28:3689–96.Google ScholarPubMed
Binz, T (2013) Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. Curr Top Microbiol Immunol 364:139157.Google Scholar
Binz, T, Rummel, A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:15841595.CrossRefGoogle ScholarPubMed
Colasante, C, Rossetto, O, Morbiato, L, Pirazzini, M, Molgó, J, Montecucco, C (2013) Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol Neurobiol 48:120127.CrossRefGoogle ScholarPubMed
Eisele, KH, Fink, K, Vey, M, Taylor, HV (2011) Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 57:555565.CrossRefGoogle ScholarPubMed
Eleopra, R, Tugnoli, V, Quatrale, R, Rossetto, O, Montecucco, C (2004) Different types of botulinum toxin in humans. Mov Disord 8:S53S59.CrossRefGoogle Scholar
Fischer, A, Montal, M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282: 2960429611.CrossRefGoogle ScholarPubMed
Gu, S, Rumpel, S, Zhou, J, Strotmeier, J, Bigalke, H, Perry, K, Shoemaker, CB, Rummel, A, Jin, R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977981.CrossRefGoogle Scholar
Hill, KK, Smith, TJ (2013) Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364:120.Google ScholarPubMed
Hughes, R, Whaler, BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160:221233.Google Scholar
Johnson, EA, Montecucco, C (2008) Botulism. Handb Clin Neurol 91:333368.Google Scholar
Lacy, DB, Tepp, W, Cohen, A, DasGupta, BR, Stevens, RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898902.CrossRefGoogle ScholarPubMed
Lee, K, Gu, S, Jin, L, Le, TT, Cheng, LW, Strotmeier, J, Kruel, AM, Yao, G, Perry, K, Rummel, A, Jin, R (2013) Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 9:e1003690.CrossRefGoogle ScholarPubMed
Masuyer, G, Chaddock, JA, Foster, KA, Acharya, KR (2014) Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 54: 2751.CrossRefGoogle ScholarPubMed
Mazzocchio, R, Caleo, M (2015) More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:4461.CrossRefGoogle Scholar
Montal, M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591617.Google Scholar
Montecucco, C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314317.CrossRefGoogle Scholar
Montecucco, C, Rasotto, MB (2015) On botulinum neurotoxin variability. MBio 6:e02131-14.CrossRefGoogle ScholarPubMed
Pantano, S, Montecucco, C (2014) The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 71:793811.CrossRefGoogle ScholarPubMed
Pellett, S, Tepp, WH, Whitemarsh, RC, Bradshaw, M, Johnson, EA (2015) In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1–5. Toxicon 107(Pt A):3742.Google Scholar
Pirazzini, M, Bordin, F, Rossetto, O, Shone, CC, Binz, T, Montecucco, C (2013) The thioredoxin reductase–thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett 587:150155.CrossRefGoogle ScholarPubMed
Pirazzini, M, Azarnia Tehran, D, Zanetti, G, Megighian, A, Scorzeto, M, Fillo, S, Shone, CC, Binz, T, Rossetto, O, Lista, F, Montecucco, C (2014) Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep 8:18701878.CrossRefGoogle ScholarPubMed
Pirazzini, M, Azarnia Tehran, D, Leka, O, Zanetti, G, Rossetto, O, Montecucco, C (2016) On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta 1858:467474.Google Scholar
Restani, L, Giribaldi, F, Manich, M, Bercsenyi, K, Menendez, G, Rossetto, O, Caleo, M, Schiavo, G (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8:e1003087.Google Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12:535549.Google Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2015) Current gaps in basic science knowledge of botulinum neurotoxin biological actions. Toxicon 107(Pt A):5963.CrossRefGoogle ScholarPubMed
Rummel, A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol 364:6190.Google Scholar
Simpson, L (2013) The life history of a botulinum toxin molecule. Toxicon 68:4059.CrossRefGoogle ScholarPubMed
Smith, LD, Sugiyama, H (1988) Botulism: The Organism, its Toxins, the Disease. Springfield, IL: C.C. Thomas Publisher.Google Scholar

References

Aoki, KR (2005). Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicol 26:785793.CrossRefGoogle ScholarPubMed
Byrnes, ML, Thickbroom, GW, Wilson, SA, Sacco, P, Shipman, JM, Stell, R (1998). The corticomotor representation of upper limb muscles in writer’s cramp and changes following botulinum toxin injection. Brain 121:977988.Google Scholar
Caleo, M, Antonucci, F, Restani, L, Mazzocchio, R (2009). A re-appraisal of the central effects of botulinum toxin type A: by what mechanism? J Neurochem 109: 1524.Google Scholar
Ce, P (2000). Central effects of botulinum toxin: study of brainstem auditory evoked potentials. Eur J Neurol 7: 747.CrossRefGoogle ScholarPubMed
Ceballos-Baumann, AO, Sheean, G, Passingham, RE, Marsden, CD, Brooks, DJ (1997). Botulinum toxin does not reverse the cortical dysfunction associated with writer’s cramp: a PET study. Brain 120:571582.Google Scholar
Conte, A, Fabbrini, G, Belvisi, D, Marsili, K, Di Stasio, F, Berardelli, A (2010). Electrical activation of the orbicularis oculi muscle does not increase the effectiveness of botulinum toxin type A in patients with blepharospasm. Eur J Neurol 17:449455.CrossRefGoogle Scholar
Eleopra, R, Tugnoli, V, De Grandis, D, Montecucco, C (1998). Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256: 135138.CrossRefGoogle Scholar
Fascarelli, F, Di Rosa, G, Bisozzi, E, Castelli, E, Santilli, V (2011). Neurophysiological changes induced by the botulinum toxin type A injection in children with cerebral palsy. Eur J Paediat Neurol 15: 5964.CrossRefGoogle Scholar
Habermann, E (1974). 125I labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptomoses and ascent to spinal cord. Naunyn Schmiedebergs Arch Pharmacol 281: 4756.Google Scholar
Hagenah, R, Bebecke, R, Wiegand, H (1977). Effect of type A botulinum toxin on the cholinergic transmission at the spinal Renshaw cells and on the inhibitory action at Ia inhibitory interneurons. Arch Pharmal 299: 267272.Google Scholar
Hamjian, JA, Walker, F (1994). Serial neurophysiological studies of intramuscular botulinum-A toxins in human. Muscle Nerve 17: 13851392.CrossRefGoogle Scholar
Kaji, R, Rosako, Y, Suyama, K, Maeda, T, Uechi, Y, Iwasaki, M (2010). Botulinum toxin type A in post-stroke upper limb spasticity. Curr Med Res Opin 26:19831992.Google Scholar
Kanovský, P, Rosales, RL (2011). Debunking the pathophysiological puzzle of dystonia: with special reference to botulinum toxin therapy. Parkinsonism Relat Disord 17: S11S14.Google Scholar
Kim, DY, Oh, BM, Paik, NJ (2006). Central effect of botulinum toxin A in humans. Int J Neurosci 116(6): 667680.CrossRefGoogle ScholarPubMed
Kojovic, M, Caronni, A, Bologna, M, Bhatia, K, Rothwell, J, Edwards, M (2011). Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Movement Disord 26(7): 12821289.Google Scholar
Naumann, M, Reiners, R (1997). Long-latency reflexes of hand muscles in idiopathic focal dystonia and their modification by botulinum toxin. Brain 120: 409416.Google Scholar
Palomar, F, Mir, P (2012). Neurophysiological changes after intramuscular injection of botulinum toxin. Clinic Neurophysiol 123: 5460.CrossRefGoogle ScholarPubMed
Picelli, A, Lobba, D, Midiri, A, Prandi, P, Melotti, C, Baldessarelli, S, Smania, N (2014). Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clin Rehabil 28(3): 232242.Google Scholar
Pickett, A, Rosales, RL (2011). New trends in the science of botulinum toxin-A as applied in dystonia. Int J Neurosci 121: 2234.Google Scholar
Pierrot-Deseilligny, E, Burke, D. (2005). The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders. Cambridge: Cambridge University Press.Google Scholar
Priori, A, Berardelli, A, Mercuri, B, Manfredi, M (1995). Physiological effects produced by botulinum toxin treatment of upper limb dystonia: changes in reciprocal inhibition between forearm muscles. Brain 118:801807.Google Scholar
Rosales, RL (2012). Dystonia, spasticity and botulinum toxin therapy: rationale, evidences and clinical context. In: Rosales, RL (Ed.), Dystonia: The Many Facets. Croatia: Intech Open Access Publishers.Google Scholar
Rosales, RL, Dressler, D (2010). On muscle spindles, dystonia and botulinum toxin. Eur J Neurol 17 (Suppl. 1): 7180.Google Scholar
Rosales, RL, Arimura, K, Takenaga, S, Osame, M (1996). Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 19: 488496.Google Scholar
Rosales, RL, Dressler, D, Bigalke, H (2006). Pharmacologic differences between botulinum toxins. Eur J Neurol 13: 210.Google Scholar
Rosales, RL, Delos Santos, MM, Ng, AR, Teleg, R, Dantes, M, Lee, LV, Fernandez, HH (2011a). The broadening application of chemodenervation in X-linked dystonia-parkinsonism (part I): muscle afferent block versus botulinum toxin-A in cervical and limb dystonias. Int J Neurosci 121: 3543.Google Scholar
Rosales, RL, Kanovsky, P, Fernandez, HH (2011b). What’s the ‘catch’ in upper-limb post-stroke spasticity: expanding the role of botulinum toxin applications. Parkinsonism Relat Disord 17: S3–S10.CrossRefGoogle ScholarPubMed
Rosales, RL, Kong, KH, Goh, KJ, Kumthornthip, W, Mok, VCT, Delgado-De Los Santos, MM, Chua, KSG, Abdullah, SJF, Zakine, B, Maisonob, P, Magis, A, Wong, KSL (2012). Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabil Neural Repair 26(7): 812821.Google Scholar
Senkarova, Z, Hlustik, P, Otruba, P, Herzig, R, Kanovsky, P (2010). Modulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with botulinum toxin A: an fMRI study. J Neuroimaging 20: 915.CrossRefGoogle ScholarPubMed
Ward, SR, Lieber, RL (2009). Biological and mechanical pathologies in spastic skeletal muscle: the functional implications of therapeutic toxins. In: Jankovic, J (Ed.), Botulinum Toxin: Therapeutic Clinical Practice and Science. Philadelphia, PA: Saunders.Google Scholar
Wohlfarth, K, Schubert, M, Rothe, B, Elek, J, Dengler, R (2001). Remote F-wave changes after local botulinum toxin application. Clin Neurophysiol 112: 636640.Google Scholar
Yamada, N, Kakuda, W, Kondo, T, Mitani, S, Shimizu, M, Abo, M (2014). Local muscle injection of botulinum toxin type A synergistically improves the beneficial effects of repetitive transcranial magnetic stimulation and intensive occupational therapy in post-stroke patients with spastic upper limb hemiparesis. Eur Neurol 72: 290298.Google Scholar
Zeuner, KE, Knutzen, A, Al-Ali, A, Hallett, M, Deuschl, G, Bergmann, TO (2010). Associative stimulation of the supraorbital nerve fails to induce timing-specific plasticity in the human blink reflex. PLoS One 5:1360213614.Google Scholar

References

Antonucci, F, Rossi, C, Gianfranceschi, L, Rossetto, O, Caleo, M (2008). Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:36893696.CrossRefGoogle ScholarPubMed
Aymard, C, Giboin, LS, Lackmy-Vallee, A, Marchand-Pauvert, V (2013). Spinal plasticity in stroke patients after botulinum neurotoxin A injection in ankle plantar flexors. Physiol Rep 1:e00173.Google Scholar
Bomba-Warczak, E, Vevea, JD, Brittain, JM, Figueroa-Bernier, A, Tepp, WH, Johnson, EA, Yeh, FL, Chapman, ER (2016). Interneuronal transfer and distal action of tetanus toxin and botulinum neurotoxins A and D in central neurons. Cell Rep 16:19741987.CrossRefGoogle Scholar
Brink, EE, Suzuki, I (1987). Recurrent inhibitory connexions among neck motoneurones in the cat. J Physiol 383:301326.Google Scholar
Giladi, N (1997). The mechanism of action of botulinum toxin type A in focal dystonia is most probably through its dual effect on efferent (motor) and afferent pathways at the injected site. J Neurol Sci 152:132135.CrossRefGoogle ScholarPubMed
Hallett, M (2011). Neurophysiology of dystonia: the role of inhibition. Neurobiol Dis 42:177184.Google Scholar
Koizumi, H, Goto, S, Okita, S, Morigaki, R, Akaike, N, Torii, Y, Harakawa, T, Ginnaga, A, Kaji, R (2014). Spinal central effects of peripherally applied botulinum neurotoxin A in comparison between its subtypes A1 and A2. Front Neurol 5:98.CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V, Iglesias, C (2008). Properties of human spinal interneurones: normal and dystonic control. J Physiol 586:12471256.Google Scholar
Marchand-Pauvert, V, Aymard, C, Giboin, LS, Dominici, F, Rossi, A, Mazzocchio, R (2013). Beyond muscular effects: depression of spinal recurrent inhibition after botulinum neurotoxin A. J Physiol 591:10171029.CrossRefGoogle ScholarPubMed
Matak, I, Lackovic, Z (2014). Botulinum toxin A, brain and pain. Prog Neurobiol 119–120:3959.Google Scholar
Matsuo, K, Ban, R, Ban, M, Yuzuriha, S (2014). Trigeminal proprioception evoked by strong stretching of the mechanoreceptors in Muller’s muscle induces reflex contraction of the orbital orbicularis oculi slow-twitch muscle fibers. Eplasty 14:e30.Google ScholarPubMed
Mazzocchio, R, Caleo, M (2015). More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:4461.Google Scholar
Moreno-Lopez, B, Pastor, AM, de la Cruz, RR, Delgado-Garcia, JM (1997). Dose-dependent, central effects of botulinum neurotoxin type A: a pilot study in the alert behaving cat. Neurology 48:456464.Google Scholar
Pastor, AM, Moreno-Lopez, B, De La Cruz, RR, Delgado-Garcia, JM (1997). Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience 81:457478.Google Scholar
Priori, A, Berardelli, A, Mercuri, B, Manfredi, M (1995). Physiological effects produced by botulinum toxin treatment of upper limb dystonia: changes in reciprocal inhibition between forearm muscles. Brain 118 (Pt 3):801807.CrossRefGoogle ScholarPubMed
Ramachandran, R, Lam, C, Yaksh, TL (2015). Botulinum toxin in migraine: role of transport in trigemino-somatic and trigemino-vascular afferents. Neurobiol Dis 79:111122.Google Scholar
Restani, L, Giribaldi, F, Manich, M, Bercsenyi, K, Menendez, G, Rossetto, O, Caleo, M, Schiavo, G (2012a). Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8:e1003087.Google Scholar
Restani, L, Novelli, E, Bottari, D, Leone, P, Barone, I, Galli-Resta, L, Strettoi, E, Caleo, M (2012b). Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport. Traffic 13:10831089.Google Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2015). Current gaps in basic science knowledge of botulinum neurotoxin biological actions. Toxicon 107(Pt A):5963.Google Scholar
Salinas, S, Schiavo, G, Kremer, EJ (2010). A hitchhiker’s guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol 8:645655.Google Scholar
Valls-Sole, J, Tolosa, ES, Ribera, G (1991). Neurophysiological observations on the effects of botulinum toxin treatment in patients with dystonic blepharospasm. J Neurol Neurosurg Psychiatry 54:310313.Google Scholar
Verderio, C, Pozzi, D, Pravettoni, E, Inverardi, F, Schenk, U, Coco, S, Proux-Gillardeaux, V, Galli, T, Rossetto, O, Frassoni, C, Matteoli, M (2004). SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599610.Google Scholar
Wang, T, Martin, S, Papadopulos, A, Harper, CB, Mavlyutov, TA, Niranjan, D, Glass, NR, Cooper-White, JJ, Sibarita, JB, Choquet, D, Davletov, B, Meunier, FA (2015). Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J Neurosci 35:61796194.Google Scholar

References

Agafonova, NV, Khasanova, DR (2014) [The use of different doses of botulotoxin A in the treatment of early arm poststroke spasticity]. [Article in Russian] Zh Nevrol Psikhiatr Im S S Korsakova 114: 6871.Google Scholar
Aoki, R (2002) Botulinum neurotoxin serotypes A and B preparations have different safety margins in preclinical models of muscle weakening efficacy and systemic safety. Toxicon 40: 923928.CrossRefGoogle Scholar
Arnouk, R, Suzuki Bellucci, C, Benatuil Stull, R, de Bessa, J, Malave, C, Gomes, C (2012) Botulinum neurotoxin type A for the treatment of benign prostatic hyperplasia: randomized study comparing two doses. Sci World J 2012: 463574.Google ScholarPubMed
Bach-Rojecky, L, Lacković, Z (2005) Antinociceptive effect of botulinum toxin type A in rat model of carrageenan and capsaicin induced pain. Croat Med J 46: 201208.Google ScholarPubMed
Bach-Rojecky, L, Lacković, Z (2009) Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav 94(2): 234238. doi: 10.1016/j.pbb.2009.08.012.Google Scholar
Basciani, M, DiRienzo, F, Fontana, A, Copetti, M, Pellegrini, F, Intiso, D (2011) Botulinum toxin type B for sialorrhoea in children with cerebral palsy: a randomized trial comparing three doses. Dev Med Child Neurol 53: 559564.CrossRefGoogle ScholarPubMed
Bittencourt da Silva, L, Karshenas, A, Bach, F, Rasmussen, S, Arendt-Nielsen, L, Gazerani, P (2014) Blockade of glutamate release by botulinum neurotoxin type A in humans: a dermal microdialysis study. Pain Res Manag 19: 126132.CrossRefGoogle ScholarPubMed
Camargo, C, Cattai, L, Teive, H (2015) Pain relief in cervical dystonia with botulinum toxin treatment. Toxins (Basel) 7: 23212335.Google Scholar
Cui, M, Khanijou, S, Rubino, J, Aoki, K (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107: 125133.Google Scholar
Currà, A, Berardelli, A (2009) Do the unintended actions of botulinum toxin at distant sites have clinical implications? Neurology 72:10951099.Google Scholar
Dodick, D, Turkel, C, DeGryse, R, Aurora, S, Silberstein, S, Lipton, R, Diener, H, Brin, MF, PREEMPT Chronic Migraine Study Group (2010) OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind randomized placebo-controlled phases of the PREEMPT clinical program. Headache 50: 921936.Google Scholar
Dressler, D, Adib Saberi, F (2013) Towards a dose optimisation of botulinum toxin therapy for axillary hyperhidrosis: comparison of different Botox doses. J Neural Transm 120: 15651567.CrossRefGoogle ScholarPubMed
Dressler, D, Benecke, R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49: 3438.CrossRefGoogle ScholarPubMed
Dressler, D, Eleopra, R (2006) Clinical use of non-A botulinum toxins: botulinum toxin type B. Neurotox Res 9: 121125.Google Scholar
Fedorowicz, Z, van Zuuren, E, Schoones, J (2013) Botulinum toxin for masseter hypertrophy. Cochrane Database of Systematic Reviews 9(9): CD007510.Google Scholar
Göbel, H, Heinze, A, Reiche, G, Hefter, H, Benecke, R, Dysport Myofascial Pain Study Group (2006) Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport) for the relief of upper back myofascial pain syndrome: results from a randomized double-blind placebo-controlled multicentre study. Pain 125: 8288.Google Scholar
Hu, Y, Guan, X, Fan, L, Li, M, Liao, Y, Nie, Z, Jin, L (2013) Therapeutic efficacy and safety of botulinum toxin type A in trigeminal neuralgia: a systematic review. J Headache Pain 14: 72.Google Scholar
Intiso, D, Basciani, M, Santamato, A, Intiso, M, Di Rienzo, F (2015) Botulinum toxin type A for the treatment of neuropathic pain in neuro-rehabilitation. Toxins 7: 24542480.Google Scholar
Kollewe, K, Mohammadi, B, Köhler, S, Pickenbrock, H, Dengler, R, Dressler, D (2015) Blepharospasm: long-term treatment with either Botox® Xeomin® or Dysport®. J Neural Transm 122: 427431.CrossRefGoogle ScholarPubMed
Langevin, P, Peloso, PM, Lowcock, J, Nolan, M, Weber, J, Gross, A, Roberts, J, Goldsmith, CH, Graham, N, Burnie, SJ, Haines, T (2011) Botulinum toxin for subacute/chronic neck pain. Cochrane Database Syst Rev 7: CD008626.Google Scholar
Marino, MJ, Terashima, T, Steinauer, JJ, Eddinger, KA, Yaksh, TL, Xu, Q (2014) Botulinum toxin B in the sensory afferent: transmitter release spinal activation and pain behavior. Pain 155: 674684.Google Scholar
Matak, I, Lacković, Z (2014) Botulinum toxin A brain and pain. Prog Neurobiol 119–120: 3959.Google Scholar
Matak, I, Lacković, Z (2015) Botulinum neurotoxin type A: actions beyond SNAP-25. Toxicology 335: 7984.Google Scholar
Mense, S (2004) Neurobiological basis for the use of botulinum toxin in pain therapy. J Neurol 251(Suppl. 1): 17.Google Scholar
Relja, M, Klepac, N (2002) Different doses of botulinum toxin A and pain responsiveness in cervical dystonia. Neurology 58: A474.Google Scholar
Relja, M, Poole, AC, Schoenen, J, Pascual, J, Lei, X, Thompson, C, European BoNTA Headache Study Group (2007) A multicentre double-blind randomized placebo-controlled parallel group study of multiple treatments of botulinum toxin type A (BoNTA) for the prophylaxis of episodic migraine headaches. Cephalalgia 27: 492503.Google Scholar
Singh, JA, Fitzgerald, PM (2011) Botulinum toxin for shoulder pain: a Cochrane systematic review. J Rheumatol 38(3): 409418.Google Scholar
Soares, A, Andriolo, RB, Atallah, AN, da Silva, EM (2012) Botulinum toxin for myofascial pain syndromes in adults. Cochrane Database Syst Rev 4: CD007533.Google Scholar
Tsui, JK, Eisen, A, Stoessl, AJ, Calne, S, Calne, DB (1986) Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 2: 245247.Google Scholar
Waseem, Z, Boulias, C, Gordon, A, Ismail, F, Sheean, G, Furlan, AD (2010) Botulinum toxin injections for low-back pain and sciatica. Cochrane Database Syst Rev 1: CD008257.Google Scholar
Winocour, S, Murad, MH, Bidgoli-Moghaddam, M, Jacobson, SR, Bite, U, Saint-Cyr, M, Tran, NV, Lemaine, V (2014) Systematic review of the use of botulinum toxin type A with subpectoral breast implants. J Plast Reconstr Aesthet Surg 67: 3441.Google Scholar
Wu, T, Fu, Y, Song, HX, Ye, Y, Dong, Y, Li, JH (2015) Effectiveness of botulinum toxin for shoulder pain treatment: a systematic review and meta-analysis. Arch Phys Med Rehabil 16(15).Google Scholar
Zhang, H, Lian, Y, Ma, Y, Chen, Y, He, C, Xie, N, Wu, C (2014) Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: observation of therapeutic effect from a randomized double-blind placebo-controlled trial. J Headache Pain 15: 65.CrossRefGoogle ScholarPubMed

References

Borodic, G, Johnson, EA, Goodnough, MC, Schantz, EJ (1996) Botulinum toxin therapy, immunologic resistance, and problems with available materials. Neurology 46: 2629.Google Scholar
Brashear, A (2001) Botulinum toxin type B: a new injectable treatment for cervical dystonia. Expert Opin Invest Drugs 10: 21912199.CrossRefGoogle ScholarPubMed
Burgen, ASV, Dickens, F, Zatman, LF (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109: 1024.Google Scholar
DasGupta, BR (1989) The structure of botulinum neurotoxin. In: Simpson, LL, ed., Botulinum Neurotoxin and Tetanus Toxin. San Diego, ca, Academic Press, pp. 5367.Google Scholar
Drachman, DB (1971) Botulinum toxin as a tool for research on the nervous system. In: Simpson, LL, ed., Neuropoisons: Their Pathophysiological Actions. Vol. 1. Poisons of Animal Origin. New York, Plenum Press, pp. 325347.CrossRefGoogle Scholar
Frevert, J (2015) Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D 15: 19.Google Scholar
Geigert, J (2013) The Challenge of CMC Regulatory Compliance for Biopharmaceuticals. New York, Springer-Verlag.CrossRefGoogle Scholar
Hambleton, P, Capel, B, Bailey, N, Heron, N, Crooks, A, Melling, J, Tse, C-K, Dolly, JO (1981) Production, purification and toxoiding of Clostridium botulinum type A toxin. In: Lewis, GE, ed., Biomedical Aspects of Botulism. New York, Academic Press, pp. 247260.Google Scholar
Hatheway, CL, Johnson, EA (1998) Clostridium: the spore-bearing anaerobes. In: Collier, L, Balows, A, Sussman, M, eds, Topley and Wilson’s Microbiology and Microbial Infections, ninth edition, Vol. 2: Systematic Bacteriology. London, Arnold, pp. 731782.Google Scholar
Hill, KK, Xie, G, Foley, BT, Smith, TJ (2015) Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 107 (Pt A): 28.Google Scholar
Hutson, RA, Zhou, Y, Johnson, EA, Sugiyama, H, Hatheway, CL (1996) Genetic characterization of Clostridium botulinum type A containing silent B neurotoxin gene sequences. J Biol Chem 271: 1078610792.Google Scholar
Johnson, EA (1999) Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Ann Rev Microbiol 53: 551575.Google Scholar
Malizio, CJ, Goodnough, MC, Johnson, EA (2000) Purification of Clostridium botulinum type A neurotoxin. In: Holst, O, ed., Bacterial Toxins: Methods and Protocols. New Jersey, Humana Press.Google Scholar
Panjwani, N, O’Keefe, RO, Pickett, A (2008) Biochemical, functional and potency characteristics of type A botulinum toxin in clinical use. The Botulinum J 1: 153166.CrossRefGoogle Scholar
Pickett, A (2014) Botulinum toxin as a clinical product: manufacture and pharmacology. In: Foster, KA, ed., Clinical Applications of Botulinum Neurotoxin. New York, Springer, pp. 749.CrossRefGoogle Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12: 535549.Google Scholar
Sakaguchi, G (1982) Clostridium botulinum toxins. Pharmacol Ther 19: 165194.Google Scholar
Schantz, EJ, Johnson, EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56: 8092.Google Scholar
Scott, AB (1981) Botulinum toxin injection of eye muscles to correct strabismus. Trans Am Ophtthalmol Soc 79: 734770.Google ScholarPubMed
Scott, AB (1989) Clostridial toxins as therapeutic agents. In: Simpson, LL, ed., Botulinum Neurotoxin and Tetanus Toxin. San Diego, CA, Academic Press, pp. 399412.Google Scholar
Scott, AB, Rosenbaum, A, Collins, CC (1973) Pharmacologic weakening of extraocular muscles. Invest Opthamol 12: 924927.Google Scholar
Sugiyama, H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44: 419448.CrossRefGoogle ScholarPubMed
Wortzman, MS, Pickett, A (2009) The science and manufacturing behind botulinum neurotoxin type A-ABO in clinical use. Aesthet Surg J 29: S34S42.Google Scholar

References

Antonucci, F, Rossi, C, Gianfranceschi, L, Rossetto, O, Caleo, M (2008) Long-distance retrograde effects of botulinum neurotoxin. A J Neurosci 28:36893696.Google Scholar
Aurora, SK, Dodick, DW, Diener, HC, DeGryse, RE, Turkel, CC, Lipton, RB, Silberstein, SD (2014) OnabotulinumtoxinA for chronic migraine: efficacy, safety, and tolerability in patients who received all five treatment cycles in the PREEMPT clinical program. Acta Neurol Scand 129:6170.CrossRefGoogle ScholarPubMed
Beard, M (2014) Translocation, entry into the cell. In: Foster, KA (ed.) Molecular Aspects of Botulinum Neurotoxin. New York: Springer; pp151170.Google Scholar
Brin, MF, Dressler, D, Aoki, R (2004) Pharmacology of botulinum toxin therapy. In: Jankovic, J, Comella, C, Brin, MF (eds) Dystonia: Etiology, Clinical Features, and Treatment. Philadelphia, PA: Lippincott Williams & Wilkins; pp93112.Google Scholar
Brin, MF, James, C, Maltman, J (2014) Botulinum toxin type A products are not interchangeable: a review of the evidence. Biologics 8:227241.Google Scholar
de Paiva, A, Meunier, FA, Molgo, J, Aoki, KR, Dolly, JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci USA 96:32003205.CrossRefGoogle ScholarPubMed
Dressler, D, Benecke, R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:3438.Google Scholar
Dressler, D, Rothwell, JC (2000) Electromyographic quantification of the paralysing effect of botulinum toxin. Eur Neurol 43:1316.Google Scholar
Dressler, D, Eckert, J, Kukowski, B, Meyer, BU (1993) Somatosensorisch Evozierte Potentiale bei Schreibkrampf: Normalisierung pathologischer Befunde unter Botulinum Toxin Therapie. Z EEG EMG 24:191.Google Scholar
Dressler, D, Rothwell, JC, Bigalke, H (2000) The sternocleidomastoid test: an in-vivo assay to investigate botulinum toxin antibody formation in man. J Neurol 247:630632.Google Scholar
Dressler, D, Adib Saberi, F, Benecke, R (2002) Botulinum toxin type B for treatment of axillar hyperhidrosis. J Neurol 249:17291732.CrossRefGoogle ScholarPubMed
Dressler, D, Saberi, FA, Kollewe, K, Schrader, C (2015) Safety aspects of incobotulinumtoxinA high-dose therapy. J Neural Transm 122:327333.Google Scholar
Eleopra, R, Tugnoli, V, Rossetto, O, De Grandis, D, Montecucco, C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Letts 256:135138.Google Scholar
Fernández-Salas, E, Wang, J, Molina, Y, Nelson, JB, Jacky, BP, Aoki, KR (2012) Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS One 7:e49516.Google Scholar
Filippi, GM, Errico, P, Santarelli, R, Bagolini, B, Manni, E (1993) Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 113:400404.CrossRefGoogle ScholarPubMed
Foster, KA (2004) The analgesic potential of clostridial neurotoxin derivatives. Expert Opin Investig Drugs 13:14371443.CrossRefGoogle ScholarPubMed
Girlanda, P, Vita, G, Nicolosi, C, Milone, S, Messina, C (1992) Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. J Neurol Neurosurg Psychiatry 55:844845.CrossRefGoogle ScholarPubMed
Hallett, M (2015) Explanation of timing of botulinum neurotoxin effects, onset, duration, and clinical ways of influencing them. Toxicon 107:6467.Google Scholar
Jabbari, B, Machado, DG (2014) Clinical use of botulinum neurotoxins: pain. In: Foster, KA (ed.) Clinical Applications of Botulinum Neurotoxin. New York: Springer; pp153176.Google Scholar
Johnson, EA, Pellett, S, Whitemarsh, RCM, Tepp, WH (2013) Compositions and methods for toxigenicity testing. International Patent Application PCT/US2012/057825.Google Scholar
Kaji, R, Kohara, N, Katayama, M, Kubori, T, Mezaki, T, Shibasaki, H, Kimura, J (1995a) Muscle afferent block by intramuscular injection of lidocaine for the treatment of writer’s cramp. Muscle Nerve 18:234235.Google Scholar
Kaji, R, Rothwell, JC, Katayama, M, Ikeda, T, Kubori, T, Kohara, N, Mezaki, T, Shibasaki, H, Kimura, J (1995b) Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann Neurol 38:155162.CrossRefGoogle ScholarPubMed
Keller, JE (2006) Recovery from botulinum neurotoxin poisoning in vivo. Neurosci 139:629637.Google Scholar
Kollewe, K, Escher, C, Fathi, D, Wulff, DU, Paracka, L, Mohammadi, B, Karst, M, Dressler, D (2016) Long-term treatment of chronic migraine with onabotulinumtoxinA: efficacy, quality of life and tolerability in a real-life setting. J Neural Transm 123:533540.Google Scholar
Lange, DJ, Brin, MF, Warner, CL, Fahn, S, Lovelace, RE (1987) Distant effects of local injection of botulinum toxin. Muscle Nerve 10:552555.Google Scholar
Mazzocchio, R, Caleo, M (2015) More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:4461.CrossRefGoogle Scholar
Pellizzari, R, Rossetto, O, Schiavo, G, Montecucco, C (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci 354:259268.Google Scholar
Peng, L, Tepp, WH, Pitkin, RM, Johnson, EA, Stenmark, P, Dong, M (2012) Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 125:32333242.Google Scholar
Rosales, RL, Arimura, K, Takenaga, S, Osame, M (1996) Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection. Muscle Nerve 19:488496.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Rummel, A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol 364:6190.Google Scholar
Schiavo, G, Matteoli, M, Montecucco, C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717766.Google Scholar
Strotmeier, J, Willjes, G, Binz, T, Rummel, A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586:310313.Google Scholar
Tsai, YC, Moller, BE, Adler, M, Oyler, GA (2014) Molecular basis for persistence of botulinum neurotoxin: the role of intracellular protein degradation pathways. In: Foster, KA (ed.) Molecular Aspects of Botulinum Neurotoxin. New York: Springer; pp191206.Google Scholar
Wohlfahrt, K, Sycha, T, Ranoux, D, Naver, H, Caird, D (2009) Dose equivalence of two commercial preparations of botulinum neurotoxin type A: time for a reassessment? Curr Med Res Opin 25:15731584.Google Scholar

References

Biglan, AW, Gonnering, R, Lockhart, LB, Rabin, B, Fuerste, FH (1986) Absence of antibody production in patients treated with botulinum A toxin. Am J Ophthalmol 101:232235.Google Scholar
Birklein, F, Walther, D, Bigalke, H, Winterholler, M, Erbguth, F (2002) Sudomotor testing predicts the presence of neutralizing botulinum A toxin antibodies. Ann Neurol 52:6873.CrossRefGoogle ScholarPubMed
Dressler, D (2000a) Botulinum Toxin Therapy. Stuttgart: Thieme Verlag.Google Scholar
Dressler, D (2000b) Complete secondary botulinum toxin therapy failure in blepharospasm. J Neurol 247:809810.CrossRefGoogle ScholarPubMed
Dressler, D (2004a) New formulation of BOTOX®: complete antibody-induced therapy failure in hemifacial spasm. J Neurol 251:360.Google Scholar
Dressler, D (2004b) Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov Disord 19 (Suppl. 8):S92–S100.Google Scholar
Dressler, D (2012) Five-year experience with incobotulinumtoxinA (Xeomin®): the first botulinum toxin drug free of complexing proteins. Eur J Neurol 19:385389.Google Scholar
Dressler, D, Adib Saberi, F (2016) Immunological safety of incobotulinumtoxinA (Xeomin®) therapy with reduced interinjection intervals. J Neural Transm 122:327333.Google Scholar
Dressler, D, Bigalke, H (2002) Botulinum toxin antibody titres after cessation of botulinum toxin therapy. Mov Disord 17:170173.CrossRefGoogle ScholarPubMed
Dressler, D, Dirnberger, G (2000) Botulinum toxin therapy: risk factors for therapy failure. Mov Disord 15 (Suppl. 2):51.Google Scholar
Dressler, D, Foster, K (in press) Pharmacology of botulinum toxins. In: Dressler, D, Altenmüller, E, Krauss, JK (eds) Treatment of Dystonia. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dressler, D, Zettl, U, Bigalke, H, Benecke, R (2000a) Can intravenous immunoglobulin improve antibody mediated botulinum toxin therapy failure? Mov Disord 15:12791281.Google Scholar
Dressler, D, Dirnberger, G, Bhatia, K, Quinn, NP, Irmer, A, Bigalke, H, Marsden, CD (2000b) Botulinum toxin antibody testing: comparison between the mouse diaphragm bioassay and the mouse lethality bioassay. Mov Disord 15:973976.Google Scholar
Dressler, D, Bigalke, H, Rothwell, JC (2000c) The sternocleidomastoid test: an in-vivo assay to investigate botulinum toxin antibody formation in man. J Neurol 247:630632.Google Scholar
Dressler, D, Muenchau, A, Bhatia, KP, Quinn, NP, Bigalke, H (2002) Antibody induced botulinum toxin therapy failure: can it be overcome by increased botulinum toxin doses? Eur Neurol 47:118121.Google Scholar
Dressler, D, Benecke, R, Bigalke, H (2003) Botulinum toxin type B (NeuroBloc®) in patients with botulinum toxin type A antibody-induced therapy failure. J Neurol 250:967969.Google Scholar
Dressler, D, Wohlfahrt, K, Meyer-Rogge, E, Wiest, L, Bigalke, H (2010) Antibody-induced failure of botulinum toxin a therapy in cosmetic indications. Dermatol Surg 36 (Suppl. 4):21822187.CrossRefGoogle ScholarPubMed
Dressler, D, Adib Saberi, F, Kollewe, K, Schrader, C (2014a) Safety aspects of incobotulinumtoxinA high dose therapy. J Neural Transm 122:327333.Google Scholar
Dressler, D, Gessler, F, Tacik, P, Bigalke, H (2014b) An enzyme-linked immunosorbent assay for detection of botulinum toxin-antibodies. Mov Disord 29:13221324.Google Scholar
Dressler, D, Altenmueller, E, Bhidayasiri, R, Bohlega, S, Chana, P, Chung, TM, Frucht, S, Garcia-Ruiz, PJ, Kaelin, A, Kaji, R, Kanovsky, P, Laskawi, R, Micheli, F, Orlova, O, Relja, M, Rosales, R, Slawek, J, Timerbaeva, S, Warner, TT, Saberi, FA (2015) Strategies for treatment of dystonia. J Neural Transm (epub ahead of printing).Google Scholar
Duane, DD, Monroe, J, Morris, RE (2000) Mycophenolate in the prevention of recurrent neutralizing botulinum toxin A antibodies in cervical dystonia. Mov Disord 15:365366.Google Scholar
Frevert, J, Dressler, D (2010) Complexing proteins in botulinum toxin type A drugs: a help or a hindrance? Biologics 4:325332.Google Scholar
Gonnering, RS (1988) Negative antibody response to long-term treatment of facial spasm with botulinum toxin. Am J Ophthalmol 105:313315.Google Scholar
Greene, PE, Fahn, S (1993) Use of botulinum toxin type F injections to treat torticollis in patients with immunity to botulinum toxin type A. Mov Disord 8:479483.Google Scholar
Greene, P, Fahn, S, Diamond, B (1994) Development of resistance to botulinum toxin type A in patients with torticollis. Mov Disord 9:213217.Google Scholar
Hanna, PA, Jankovic, J (1998) Mouse bioassay versus Western blot assay for botulinum toxin antibodies: correlation with clinical response. Neurology 50:16241629.Google Scholar
Jankovic, J, Schwartz, K (1995) Response and immunoresistance to botulinum toxin injections. Neurology 45:17431746.Google Scholar
Kessler, KR, Benecke, R (1997) The EBD test: a clinical test for the detection of antibodies to botulinum toxin type A. Mov Disord 12:9599.Google Scholar
Naumann, M, Toyka, KV, Mansouri Taleghani, B, Ahmadpour, J, Reiners, K, Bigalke, H (1998) Depletion of neutralising antibodies resensitises a secondary non-responder to botulinum A neurotoxin. J Neurol Neurosurg Psychiat 65:924927.Google Scholar
Rossetto, O, Pirazzini, M, Montecucco, C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12:535549.Google Scholar
Voller, B, Moraru, E, Auff, E, Benesch, M, Poewe, W, Wissel, J, Müller, J, Entner, T, Bigalke, H, Schnider, P (2004) Ninhydrin sweat test: a simple method for detecting antibodies neutralizing botulinum toxin type A. Mov Disord 19:943947.Google Scholar

References

Anderson, J, Williams, PT, Katos, AM, et al. 2009. Botulinum toxins. In Gupta, RC, ed., Handbook of Toxicology of Chemical Warfare Agents. Amsterdam: Elsevier BV: 407432.Google Scholar
Chen, R, Karp, BI, Hallett, M. 1998. Botulinum toxin type F for treatment of dystonia: long-term experience. Neurology 51:14941496.CrossRefGoogle ScholarPubMed
Coffield, JA, Bakry, N, Zhang, RD, et al. 1997. In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J Pharmacol Exp Ther 280:14891498.Google Scholar
Eleopra, R, Tugnoli, V, Rossetto, O, et al. 1997. Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224: 9194.Google Scholar
Eleopra, R, Tugnoli, V, Rossetto, O, et al. 1998. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256: 135138.Google Scholar
Eleopra, R, Tugnoli, V, Quatrale, R, et al. 2002. Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clin Neurophysiol 113: 12581264.Google Scholar
Eleopra, R, Tugnoli, V, Quatrale, R, et al. 2004. Different types of botulinum toxin in humans. Mov Disord 19 (Suppl. 8):S53S59.Google Scholar
Eleopra, R, Tugnoli, V, Quatrale, R, et al. 2006. Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9:127131.Google Scholar
Eleopra, R, Montecucco, C, Devigili, G, et al. 2013. Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study. Clin Neurophysiol 124: 9991004.Google Scholar
Greene, PE, Fahn, S. 1993. Use of botulinum toxin type F injections to treat torticollis in patients with immunity to botulinum toxin type A. Mov Disord 8:479483.Google Scholar
Greene, PE, Fahn, S. 1996. Response to botulinum toxin F in seronegative botulinum toxin A-resistant patients. Mov Disord 11:181184.Google Scholar
Hallett, M. 2000. How does botulinum toxin work? Ann Neurol 48:78.Google Scholar
Jankovic, J. 2004. Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiat 75:951957.Google Scholar
Johnson, EA, Montecucco, C. 2008. Botulism. In: Engel, AG, ed., Neuromuscular Junction Disorders: Handbook of Clinical Neurology. Amsterdam: Elsevier: 333368.Google Scholar
Ludlow, CL, Hallett, M, Rhew, K, et al. 1992. Therapeutic use of type F botulinum toxin. N Engl J Med 326:349350.Google Scholar
Mezaki, T, Kaji, R, Brin, MF, et al. 1999. Combined use of type A and F botulinum toxins for blepharospasm: a double-blind controlled trial. Mov Disord 14:10171020.Google Scholar
Rossetto, O, Pirazzini, M, Montecucco, C. 2014. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nature 12:535549.Google Scholar
Smith, LD, Sugiyama, H. 1988. Botulism: The Organism, its Toxins, the Disease. Springfield, IL: C.C. Thomas Publ.Google Scholar

References

Berweck, S, Feldkamp, A, Francke, A, Nehles, J, Schwerin, A, Heinen, F (2002) Sonography-guided injection of botulinum toxin A in children with cerebral palsy. Neuropediatrics 33:221223.Google Scholar
Boon, AJ, Oney-Marlow, TM, Murthy, NS, Harper, CM, McNamara, TR, Smith, J (2011) Accuracy of electromyography needle placement in cadavers: non-guided vs. ultrasound guided. Muscle Nerve 44:4549.Google Scholar
Fujimoto, H, Mezaki, T, Yokoe, M, Mochizuki, H (2012) Sonographic guidance provides a low-risk approach to the longus colli muscle. Mov Disord 27:928929.Google Scholar
Gervasio, A, Mujahed, I, Biasio, A, Alessi, S (2010) Ultrasound anatomy of the neck: the infrahyoid region. J Ultrasound 13:8589.Google Scholar
Hobson-Webb, LD, Boon, AJ (2013) Reporting the results of diagnostic neuromuscular ultrasound: an educational report. Muscle Nerve 47:608610.Google Scholar
Hong, JS, Sathe, GG, Niyonkuru, C, Munin, MC (2012) Elimination of dysphagia using ultrasound guidance for botulinum toxin injections in cervical dystonia. Muscle Nerve 46:535539.Google Scholar
Huang, L, Chen, HX, Ding, XD, Xiao, HQ, Wang, W, Wang, H (2015) Efficacy analysis of ultrasound-guided local injection of botulinum toxin type A treatment with orthopedic joint brace in patients with cervical dystonia. Eur Rev Med Pharmacol Sci 19:19891993.Google Scholar
Kopf, H, Mostbeck, GH, Loizides, A, Gruber, H (2011) Ultrasound-guided interventions at peripheral nerves: diagnostic and therapeutic indications. Ultraschall Med 32:440456.Google Scholar
Lee, IH, Yoon, YC, Sung, DH, Kwon, JW, Jung, JY (2009) Initial experience with imaging-guided intramuscular botulinum toxin injection in patients with idiopathic cervical dystonia. AJR Am J Roentgenol 192:9961001.Google Scholar
Lim, EC, Quek, AM, Seet, RC (2011) Accurate targeting of botulinum toxin injections: how to and why. Parkinsonism Relat Disord 17 (Suppl. 1):S34–39.Google Scholar
Mezaki, T, Matsumoto, S, Sakamoto, T, Mizutani, K, Kaji, R (2000) Cervical echomyography in cervical dystonia and its application to the monitoring for muscle afferent block (MAB). Rinsho Shinkeigaku 40:689693.Google Scholar
Peetrons, P (2002) Ultrasound of muscles. Eur Radiol 12:3543.Google Scholar
Picelli, A, Tamburin, S, Bonetti, P, Fontana, C, Barausse, M, Dambruoso, F, Gajofatto, F, Santilli, V, Smania, N (2012) Botulinum toxin type A injection into the gastrocnemius muscle for spastic equinus in adults with stroke: a randomized controlled trial comparing manual needle placement, electrical stimulation and ultrasonography-guided injection techniques. Am J Phys Med Rehabil 91:957964.CrossRefGoogle ScholarPubMed
Picelli, A, Lobba, D, Midiri, A, Prandi, P, Melotti, C, Baldessarelli, S, Smania, N (2014) Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clin Rehabil 28:232242.Google Scholar
Schramm, A, Bäumer, T, Fietzek, U, Heitmann, S, Walter, U, Jost, WH (2015) Relevance of sonography for botulinum toxin treatment of cervical dystonia: an expert statement. J Neural Transm 122:14571463.Google Scholar
Walter, U, Dressler, D (2014) Ultrasound-guided botulinum toxin injections in neurology: technique, indications and future perspectives. Expert Rev Neurother 14:923936.CrossRefGoogle ScholarPubMed

References

Dressler, D, Adib Saberi, F (2017) Immunological safety of incobotulinumtoxinA (Xeomin®) therapy with reduced interinjection intervals. J Neural Transm 124:437–440.Google Scholar
Dressler, D, Tacik, P. Adib Saberi, F (2014a) Botulinum toxin therapy of cervical dystonia: duration of therapeutic effects. J Neural Transm 122:297300.Google Scholar
Dressler, D, Adib Saberi, F, Kollewe, K, Schrader, C (2014b) Safety aspects of incobotulinumtoxinA high dose therapy. J Neural Transm 122:327333.Google Scholar

References

Albanese, A, Abbruzzese, G, Dressler, D, Duzynski, W, Khatkova, S, Marti, MJ, Mir, P, Montecucco, C, Moro, E, Pinter, M, Relja, M, Roze, E, Skogseid, IM, Timerbaeva, S, Tzoulis, C (2015). Practical guidance for CD management involving treatment of botulinum toxin: a consensus statement. J Neurol 262:22012213.Google Scholar
Baizabal-Carvallo, JF, Jankovic, J, Pappert, E (2011). Flu-like symptoms following botulinum toxin therapy. Toxicon 58:17.Google Scholar
Baizabal-Carvallo, JF, Jankovic, J, Feld, J (2013). Flu-like symptoms and associated immunological response following therapy with botulinum toxins. Neurotox Res 2:298306.Google Scholar
Benecke, R, Jost, WH, Kanovsky, P, Ruzicka, E, Comes, G, Grafe, S (2005). A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 64:19491951.CrossRefGoogle ScholarPubMed
Bhidayasiri, R (2011). Treatment of complex cervical dystonia with botulinum toxin: involvement of deep-cervical muscles may contribute to suboptimal responses. Parkinsonism Relat Disord 17 (Suppl. 1):S20S24.Google Scholar
Brashear, A, Lew, MF, Dykstra, DD, Comella, CL, Factor, SA, Rodnitzky, RL, Trosch, R, Singer, C, Brin, MF, Murray, JJ, Wallace, JD, Willmer-Hulme, A, Koller, M (1999). Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-responsive cervical dystonia. Neurology 53:14391446.Google Scholar
Brin, MF, Lew, MF, Adler, CH, Comella, CL, Factor, SA, Jankovic, J, O’Brien, C, Murray, JJ, Wallace, JD, Willmer-Hulme, A, Koller, M (1999). Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 53:14311438.Google Scholar
Brin, MF, Comella, CL, Jankovic, J, Lai, F, Naumann, M; CD-017 BoNTA Study Group (2008). Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov Disord 23:13531360.Google Scholar
Burke, RE, Fahn, S, Marsden, CD (1986). Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology 36:160164.Google Scholar
Charles, D, Brashear, A, Hauser, RA, Li, HI, Boo, LM, Brin, MF; CD 140 Study Group (2012). Efficacy, tolerability, and immunogenicity of onabotulinumtoxinA in a randomized, double-blind, placebo-controlled trial for cervical dystonia. Clin Neuropharmacol 35:208214.Google Scholar
Charles, PD, Adler, CH, Stacy, M, Comella, C, Jankovic, J, Manack Adams, A, Schwartz, M, Brin, MF (2014). Cervical dystonia and pain: characteristics and treatment patterns from CD PROBE (Cervical Dystonia Patient Registry for Observation of OnabotulinumtoxinA Efficacy). J Neurol 261:13091319.Google Scholar
Comella, CL, Jankovic, J, Shannon, KM, Tsui, J, Swenson, M, Leurgans, S, Fan, W; Dystonia Study Group (2005). Comparison of botulinum toxin serotypes A and B for the treatment of cervical dystonia. Neurology 65:14231429.Google Scholar
Comella, CL, Jankovic, J, Truong, DD, Hanschmann, A, Grafe, S; US XEOMIN Cervical Dystonia Study Group (2011). Efficacy and safety of incobotulinumtoxinA (NT 201, XEOMIN(R), botulinum neurotoxin type A, without accessory proteins) in patients with cervical dystonia. J Neurol Sci 308:103109.Google Scholar
Comella, CL, Perlmutter, JS, Jinnah, HA, Waliczek, TA, Rosen, AR, Galpern, WR, Adler, CA, Barbano, RL, Factor, SA, Goetz, CG, Jankovic, J, Reich, SG, Rodriguez, RL, Severt, WL, Zurowski, M, Fox, SH, Stebbins, GT (2016). Clinimetric testing of the Comprehensive Cervical Dystonia Rating Scale (CCDRS). Mov Disord 31:563569.Google Scholar
Defazio, G, Jankovic, J, Giel, JL, Papapetropoulos, S (2013). Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinet Mov (NY) 4:3.Google Scholar
Dressler, D (2000). Electromyographic evaluation of cervical dystonia for planning of botulinum toxin therapy. Eur J Neurol 7:713718.Google Scholar
Dressler, D, Benecke, R (2003). Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:3438.Google Scholar
Dressler, D, Bigalke, H (2004). Antibody-induced failure of botulinum toxin type B therapy in de novo patients. Eur Neurol 52:132135.Google Scholar
Dressler, D, Tacik, P, Saberi, FA (2015). Botulinum toxin therapy of cervical dystonia: duration of therapeutic effects. J Neural Transm 122:297300.Google Scholar
Evidente, VG, Truong, D, Jankovic, J (2014). IncobotulinumtoxinA (Xeomin(R)) injected for blepharospasm or cervical dystonia according to patient needs is well tolerated. J Neurol Sci 346:116120.Google Scholar
Finsterer, J, Maeztu, C, Revuelta, G, Reichel, G, Truong, D (2015). Collum-caput (COL-CAP) concept for conceptual anterocollis, anterocaput, and forward sagittal shift. J Neurol Sci 355:3743.Google Scholar
Greene, P, Kang, U, Fahn, S, Brin, M, Moskowitz, C, Flaster, E. (1990). Double-blind, placebo-controlled trial of botulinum toxin injections for the treatment of spasmodic torticollis. Neurology 40:12131218.CrossRefGoogle ScholarPubMed
Hallett, M, Albanese, A, Dressler, D, Segal, KR, Simpson, DM, Truong, D, Jankovic, J (2013). Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 67:94114.Google Scholar
Hanna, PA, Jankovic, J (1998). Mouse bioassay versus Western blot assay for botulinum toxin antibodies: correlation with clinical response. Neurology 50:16241629.Google Scholar
Jankovic, J (2017). Botulinum toxin: state of the art. Mov Disod 32:11311138.Google Scholar
Jankovic, J (2018). An update on new and unique uses of botulinum toxin in movement disorders. Toxicon. Epub ahead of print.Google Scholar
Jankovic, J, Hunter, C, Dolimbek, BZ, Dolimbek, GS, Adler, CH, Brashear, A, Comella, CL, Gordon, M, Riley, DE, Sethi, K, Singer, C, Stacy, M, Tarsy, D, Atassi, MZ (2006). Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 67:22332235.Google Scholar
Jankovic, J, Adler, CH, Charles, D, Comella, C, Stacy, M, Schwartz, M, Manack Adams, A, Brin, MF (2015). Primary results from the cervical dystonia patient registry for observation of onabotulinumtoxinA efficacy (CD PROBE). J Neurol Sci 349:8493.Google Scholar
Jindal, P, Jankovic, J (2017). Botulinum toxin treatment in Parkinson’s disease and atypical parkinsonian disorders. In Jabbari, Bahman (ed.) Botulinum Toxin Treatment. New York: Springer.Google Scholar
Jinnah, HA, Goodmann, E, Rosen, AR, Evatt, M, Freeman, A, Factor, S (2016). Botulinum toxin treatment failures in cervical dystonia: causes, management, and outcomes. J Neurol 263:11881194.Google Scholar
Jost, WH, Benecke, R, Hauschke, D, Jankovic, J, Kaňovský, P, Roggenkämper, P, Simpson, DM, Comella, CL (2014). Clinical and pharmacological properties of incobotulinumtoxinA and its use in neurological disorders. Drug Des Devel Ther 9:19131926.Google Scholar
Kilbane, C, Ostrem, J, Galifianakis, N, Grace, J, Markun, L, Glass, GA (2012). Multichannel electromyographic mapping to optimize onabotulinumtoxinA efficacy in cervical dystonia. Tremor Other Hyperkinet Mov (NY) 2.Google Scholar
Lew, MF, Adornato, BT, Duane, DD, Dykstra, DD, Factor, SA, Massey, JM, Brin, MF, Jankovic, J, Rodnitzky, RL, Singer, C, Swenson, MR, Tarsy, D, Murray, JJ, Koller, M, Wallace, JD (1997). Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology 49:701707.Google Scholar
Misra, VP, Ehler, E, Zakine, B, Maisonobe, P, Simonetta-Moreau, M; Interest in CD Group (2012). Factors influencing response to botulinum toxin type A in patients with idiopathic cervical dystonia: results from an international observational study. BMJ Open 14(2).Google Scholar
Mordin, M, Masaquel, C, Abbott, C, Copley-Merriman, C (2014). Factors affecting the health-related quality of life of patients with cervical dystonia and impact of treatment with abobotulinumtoxinA (Dysport): results from a randomised, double-blind, placebo-controlled study. BMJ Open 4:e005150.Google Scholar
Nijmeijer, SW, Koelman, JH, Kamphuis, DJ, Tijssen, MA (2012). Muscle selection for treatment of cervical dystonia with botulinum toxin: a systematic review. Parkinsonism Relat Disord 18:731736.Google Scholar
Odergren, T, Hjaltason, H, Kaakkola, S, Solders, G, Hanko, J, Fehling, C, Marttila, RJ, Lundh, H, Gedin, S, Westergren, I, Richardson, A, Dott, C, Cohen, H (1998). A double blind, randomised, parallel group study to investigate the dose equivalence of Dysport and Botox in the treatment of cervical dystonia. J Neurol Neurosurg Psychiatry 64:612.Google Scholar
Pappert, EJ, Germanson, T; Myobloc/Neurobloc European Cervical Dystonia Study (2008). Botulinum toxin type B vs. type A in toxin-naive patients with cervical dystonia: randomized, double-blind, noninferiority trial. Mov Disord 23: 510517.Google Scholar
Patel, N, Hanfelt, J, Marsh, L, Jankovic, J; Members of the Dystonia Coalition (2014). Alleviating manoeuvres (sensory tricks) in cervical dystonia. J Neurol Neurosurg Psychiatry 85(8): 882884.Google Scholar
Poewe, W, Deuschl, G, Nebe, A, Feifel, E, Wissel, J, Benecke, R, Kessler, KR, Ceballos-Baumann, AO, Ohly, A, Oertel, W, Künig, G; German Dystonia Study Group (1998). What is the optimal dose of botulinum toxin A in the treatment of cervical dystonia? Results of a double blind, placebo controlled, dose ranging study using Dysport. J Neurol Neurosurg Psychiatry 64:1317.Google Scholar
Ramirez-Castaneda, J, Jankovic, J (2014). Long-term efficacy, safety, and side effect profile of botulinum toxin in dystonia: a 20-year follow-up. Toxicon 90:344348.Google Scholar
Ramirez-Castaneda, J, Jankovic, J, Comella, C, Dashtipour, K, Fernandez, HH, Mari, Z (2013). Diffusion, spread, and migration of botulinum toxin. Mov Disord 28:17751783.Google Scholar
Sankhla, C, Jankovic, J, Duane, D (1998). Variability of the immunologic and clinical response in dystonic patients immunoresistant to botulinum toxin injections. Mov Disord 13:150154.Google Scholar
Schramm, A, Baumer, T, Fietzek, U, Heitmann, S, Walter, U, Jost, WH (2015). Relevance of sonography for botulinum toxin treatment of cervical dystonia: an expert statement. J Neural Transm 122:14571463.Google Scholar
Sethi, KD, Rodriguez, R, Olayinka, B (2012). Satisfaction with botulinum toxin treatment: a cross-sectional survey of patients with cervical dystonia. J Med Econ 15:419423.Google Scholar
Simpson, DM, Blitzer, A, Brashear, A, Comella, C, Dubinsky, R, Hallett, M, Jankovic, J, Karp, B, Ludlow, CL, Miyasaki, JM, Naumann, M, So, Y; Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (2008). Assessment: botulinum neurotoxin for the treatment of movement disorders (an evidence-based review) – report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 70:16991706.Google Scholar
Simpson, DM, Hallet, M, Ashman, EJ, Cornella, CL, Green, MW, Gronseth, GS, Armstrong, MJ, Gloss, D, Potrebic, S, Jankovic, J, Karp, BP, Naumann, M, So, YT, Yablon, SA (2016). Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache. Report of the Guidelines Development Subcommittee of the American Academy of Neurology. Neurology 86(19): 18181826.Google Scholar
Thenganatt, MA, Fahn, S (2012). Botulinum toxin for the treatment of movement disorders. Curr Neurol Neurosci Rep 12:399409.Google Scholar
Thenganatt, MA, Jankovic, J (2014). Treatment of dystonia. Neurotherapeutics 11: 139152.Google Scholar
Truong, D, Duane, DD, Jankovic, J, Singer, C, Seeberger, LC, Comella, CL, Lew, MF, Rodnitzky, RL, Danisi, FO, Sutton, JP, Charles, PD, Hauser, RA, Sheean, GL (2005). Efficacy and safety of botulinum type A toxin (Dysport) in cervical dystonia: results of the first US randomized, double-blind, placebo-controlled study. Mov Disord 20:783791.Google Scholar
Truong, D, Brodsky, M, Lew, M, Brashear, A, Jankovic, J, Molho, E, Orlova, O, Timerbaeva, S; Global Dysport Cervical Dystonia Study Group (2010). Long-term efficacy and safety of botulinum toxin type A (Dysport) in cervical dystonia. Parkinsonism Relat Disord 16:316323.Google Scholar
Wu, C, Xue, F, Chang, W, Lian, Y, Zheng, Y, Xie, N, Zhang, L, Chen, C (2016). Botulinum toxin type A with or without needle electromyographic guidance in patients with cervical dystonia. Springerplus 8 (5):1292.Google Scholar
Yun, JY, Kim, JW, Kim, HT, Chung, SJ, Kim, JM, Cho, JW, Lee, JY, Lee, HN, You, S, Oh, E, Jeong, H, Kim, YE, Kim, HJ, Lee, WY, Jeon, BS (2015). Dysport and Botox at a ratio of 2.5:1 units in cervical dystonia: a double-blind, randomized study. Mov Disord 30:206213.Google Scholar

References

Albanese, A, Asmus, F, Bhatia, KP, Elia, AE, Elibol, B, Filippini, G, Gasser, T, Krauss, JK, Nardocci, N, Newton, A, Valls-Solé, J (2011). EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol 18:518.Google Scholar
Aramideh, M, Bour, LJ, Koelman, JH, Speelman, JD, Ongerboer de Visser, BW (1994). Abnormal eye movements in blepharospasm and involuntary levator palpebrae inhibition: clinical and pathophysiological considerations. Brain 117:14571474.Google Scholar
Brin, M, Danisio, F, Blitzer, A (2003). Blephaospasm, oromandibular dystonia, Meige’s syndrome and hemifacial spasm. In: Moore, AP, Naumann, M (eds) Handbook of Botulinum Toxin Treatment. Oxford: Blackwell Scientific.Google Scholar
Colosimo, C, Chianese, M, Contarino, F, Giovannelli, M, Bentivoglio, AR (2003). Botulinum toxin type B in blepharospasm and hemifacial spasm. J Neurol, Neurosurg Psychiatry 74:687.Google Scholar
Colosimo, C, Suppa, A, Fabbrini, G, Bologna, M, Berardelli, A (2010). Craniocervical dystonia: clinical and pathophysiological features. Eur J Neurol 17 (Suppl. 1):1521.Google Scholar
Colosimo, C, Tiple, D, Berardelli, A (2012). Efficacy and safety of long-term botulinum toxin treatment in craniocervical dystonia: a systematic review. Neurotox Res 22:265273.Google Scholar
Defazio, G, Matarin, M, Peckham, EL, Peckham, EL, Martino, D, Valente, EM, Singleton, A, Crawley, A, Aniello, MS, Brancati, F, Abbruzzese, G, Girlanda, P, Livrea, P, Hallett, M, Berardelli, A (2009). The TOR1A polymorphism rs1182 and the risk of spread in primary blepharospasm. Mov Disord 24(4):613616.Google Scholar
Girlanda, P, Quartarone, A, Sinicropi, S, Nicolosi, C, Messina, C (1996). Unilateral injection of botulinum toxin in blepharospasm: single fiber electromyography and blink reflex study. Mov Disord 11:2731.Google Scholar
Goldstein, JE, Cogan, DG (1965). Apraxia of lid opening. Arch Ophthalmol 73:155159.Google Scholar
Gonzalez-Alegre, P, Schneider, RL, Hoffman, H (2014). Clinical, etiological, and therapeutic features of jaw-opening and jaw-closing oromandibular dystonias: a decade of experience at a single treatment center. Tremor Other Hyperkinet Mov (NY) 30(4):231.Google Scholar
Grandas, F, Elston, J, Quinn, N, Marsden, CD (1988). Blepharospasm: a review of 264 patients. J Neurol Neurosurg Psychiatry 51:767772.Google Scholar
Hallett, M, Albanese, A, Dressler, D, Segal, KR, Simpson, DM, Truong, D, Jankovic, J (2013). Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 67:94114.Google Scholar
Hellman, A, Torres-Russotto, D (2015). Botulinum toxin in the management of blepharospasm: current evidence and recent developments. Ther Adv Neurol Disord 8(2):8291.Google Scholar
Jankovic, J, Ford, J (1983). Blepharospasm and orofacial-cervical dystonia: clinical and pharmacological findings in 100 patients. Ann Neurol 13:402411.Google Scholar
Jankovic, J, Orman, J (1987). Botulinum A toxin for cranial-cervical dystonia: a double-blind, placebo-controlled study. Neurology 37:616623.Google Scholar
Jankovic, J, Comella, C, Hanschmann, A, Grafe, S (2011). Efficacy and safety of incobotulinumtoxinA (NT 201, Xeomin) in the treatment of blepharospasm: a randomized trial. Mov Disord 26:15211528.Google Scholar
Kraft, SP, Lang, AE (1988). Cranial dystonia, blepharospasm and hemifacial spasm: clinical features and treatment, including the use of botulinum toxin. CMAJ 139:837844.Google Scholar
Lee, SJ, McCall, WD Jr, Kim, YK (2010). Effect of botulinum toxin injection on nocturnal bruxism: a randomized controlled trial. Am J Phys Med Rehabil 89:1623.Google Scholar
Meige, H (1910). Les convulsions de la face: une forme clinique de convulsions faciales, bilaterales et mediane. Rev Neurol (Paris) 21:437443.Google Scholar
Mendes, RA, Upton, LG (2009). Management of dystonia of the lateral pterygoid muscle with botulinum toxin A. Br J Oral Maxillofac Surg 47:481483.Google Scholar
Nuessgens, Z, Roggenkamper, P (1997). Comparison of two botulinum-toxin preparations in the treatment of essential blepharospasm. Graefes Arch Clin Exp Ophthalmo 235:197199.Google Scholar
Ramirez-Castaneda, J, Jankovic, J (2013). Long-term efficacy and safety of botulinum toxin injections in dystonia. Toxins 5:249266.Google Scholar
Roggenkamper, P, Jost, WH, Bihari, K, Comes, G, Grafe, S; NT 201 Blepharospasm Study Team (2006). Efficacy and safety of a new botulinum toxin type A free of complexing proteins in the treatment of blepharospasm. J Neural Transm 113:303312.Google Scholar
Schneider, SA, Aggarwal, A, Bhatt, M, Dupont, E, Tisch, S, Limousin, P, Lee, P, Quinn, N, Bhatia, KP (2006). Severe tongue protrusion dystonia: clinical syndromes and possible treatment. Neurology 26(67):940943.Google Scholar
Scott, AB, Rosenbaum, A, Collins, CC (1973). Pharmacologic weakening of extraocular muscles. Invest Ophthalmol Vis Sci 12:924927.Google Scholar
Tan, EK, Jankovic, J (1999). Botulinum toxin A in patients with oromandibular dystonia: long-term follow-up. Neurology 53:21022107.Google Scholar
Thompson, PD, Obeso, JA, Delgado, G, Gallego, J, Marsden, CD (1986). Focal dystonia of the jaw and the differential diagnosis of unilateral jaw and masticatory spasm. J Neurol Neurosurg Psychiatry 49:651656.Google Scholar
Truong, D, Comella, C, Fernandez, HH, Ondo, WG; Dysport Benign Essential Blepharospasm Study Group (2008). Efficacy and safety of purified botulinum toxin type A (Dysport) for the treatment of benign essential blepharospasm: a randomized, placebo-controlled, phase II trial. Parkinsonism Relat Disord 14:407414.Google Scholar
Wabbels, B, Reichel, G, Fulford-Smith, A, Wright, N, Roggenkämper, P (2011). Double-blind, randomised, parallel group pilot study comparing two botulinum toxin type A products for the treatment of blepharospasm. J Neural Transm 11:233239.Google Scholar
Weiss, EM, Hershey, T, Karimi, M, Racette, B, Tabbal, SD, Mink, JW, Paniello, RC, Perlmutter, JS (2006). Relative risk of spread of symptoms among the focal onset primary dystonias. Mov Disord 21:11751181.Google Scholar

References

Adler, CH, Bansberg, SF, Krein-Jones, K, Hentz, JG. 2004. Safety and efficacy of botulinum toxin type B (Myobloc) in adductor spasmodic dysphonia. Mov Disord 19(9): 10751079.Google Scholar
Aronson, AE, De Santo, LW. 1983. Adductor spastic dysphonia: three years after recurrent laryngeal nerve resection. Laryngoscope 93(1): 18.Google Scholar
Aronson, AE, Lagerlund, TD. 1991. Neuroimaging studies do not prove the existence of brain abnormalities in spastic (spasmodic) dysphonia. J Speech Hear Res 34(4): 801811.Google Scholar
Aronson, AE, Brown, JR, Litin, EM, Pearson, JS. 1968. Spastic dysphonia: I. Voice, neurologic, and psychiatric aspects. J Speech Hear Disord 33(3): 203218.Google Scholar
Atassi, MZ. 2004. Basic immunological aspects of botulinum toxin therapy. Mov Disord 19(Suppl. 8): S68S84.Google Scholar
Atassi, MZ. 2009. Immune recognition of BoNTs A and B: how anti-toxin antibodies that bind to the heavy chain obstruct toxin action. Toxicon 54(5):600613.Google Scholar
Atassi, MS, Dolimbek, BZ, Jankovic, J, Steward, LE, Aoki, KR. 2011. Regions of botulinum neurotoxin A light chain recognized by human anti-toxin antibodies from cervical dystonia patients immunoresistant to toxin treatment: the antigenic structure of the active toxin recognized by human antibodies. Immunobiology 216(7):782792.Google Scholar
Berke, GS, Blackwell, KE, Gerratt, BR, Verneil, A, Jackson, KS, Sercarz, JA. 1999. Selective laryngeal adductor denervation-reinnervation: a new surgical treatment for adductor spasmodic dysphonia. Ann Otol Rhinol Laryngol 108(3): 227231.Google Scholar
Bielamowicz, S, Stager, SV, Badillo, A. Godlewski, A. 2002. Unilateral versus bilateral injections of botulinum toxin in patients with adductor spasmodic dysphonia. J Voice 16(1): 117123.Google Scholar
Blitzer, A. 2005. Botulinum toxin A and B: a comparative dosing study for spasmodic dysphonia. Otolaryngol Head Neck Surg 133(6): 836838.Google Scholar
Blitzer, A, Lovelace, RE, Brin, MF, Fahn, S, Fink, ME. 1985. Electromyographic findings in focal laryngeal dystonia (spastic dysphonia). Ann Otol Rhinol Laryngol 94(6 Pt 1): 591594.Google Scholar
Blitzer, A, Brin, MF, Stewart, CF. 1998. Botulinum toxin management of spasmodic dysphonia (laryngeal dystonia): a 12-year experience in more than 900 patients. Laryngoscope 108(10): 14351441.Google Scholar
Carlsoo, B, Izdebski, K, Dahlqvist, A, Domeij, S, Dedo, HH. 1987. The recurrent laryngeal nerve in spastic dysphonia: a light and electron microscopic study. Acta Otolaryngol 103(1–2): 96104.Google Scholar
Chhetri, DK, Blumin, JH, Vinters, HV, Berke, GS. 2003. Histology of nerves and muscles in adductor spasmodic dysphonia. Ann Otol Rhinol Laryngol 112(4): 334341.Google Scholar
Critchley, M. 1939. Spastic dysphonia ‘inspiratory speech’. Brain 62: 96103.Google Scholar
Dedo, HH. 1976. Recurrent laryngeal nerve section for spastic dysphonia. Ann Otol Rhinol Laryngol 85(4 Pt 1): 451459.Google Scholar
Dedo, HH, Izdebski, K. 1984. Evaluation and treatment of recurrent spasticity after recurrent laryngeal nerve section: a preliminary report. Ann Otol Rhinol Laryngol 93(4 Pt 1): 343345.Google Scholar
Feldman, M, Nixon, JV, Finitzo-Hieber, T, Freeman, FJ. 1984. Abnormal parasympathetic vagal function in patients with spasmodic dysphonia. Ann Intern Med 100(4): 491495.Google Scholar
Finitzo-Hieber, T, Freeman, FJ, Gerling, IJ, Dobson, L, Schaefer, SD. 1982. Auditory brainstem response abnormalities in adductor spasmodic dysphonia. Am J Otolaryngol 3(1): 2630.Google Scholar
Hillel, AD, Maronian, NC, Waugh, PF, Robinson, L, Klotz, DA. 2004. Treatment of the interarytenoid muscle with botulinum toxin for laryngeal dystonia. Ann Otol Rhinol Laryngol 113(5): 341348.Google Scholar
Isshiki, N, Yamamoto, I, Fukagai, S. 2004. Type 2 thyroplasty for spasmodic dysphonia: fixation using a titanium bridge. Acta Otolaryngol 124(3): 309312.Google Scholar
Jacome, DE, Yanez, GF. 1980. Spastic dysphonia and Meigs disease. Neurology 30(4): 349.Google Scholar
Marsden, CD, Sheehy, MP. 1982. Spastic dysphonia, Meige disease, and torsion dystonia. Neurology 32(10): 12021203.Google Scholar
Meyer, T, Blitzer, A. 2006. Spasmodic dysphonia. In: Stacy, M, ed. Handbook of Dystonia. London: CRC Press, pp. 179188.Google Scholar
Murry, T, Woodson, GE. 1995. Combined-modality treatment of adductor spasmodic dysphonia with botulinum toxin and voice therapy. J Voice 9(4): 460465.Google Scholar
Netterville, JL, Stone, RE, Rainey, C, Zealear, DL, Ossoff, RH. 1991. Recurrent laryngeal nerve avulsion for treatment of spastic dysphonia. Ann Otol Rhinol Laryngol 100(1): 1014.Google Scholar
Newton-John, H. 1988. Acute upper airway obstruction due to supraglottic dystonia induced by a neuroleptic. BMJ 297(6654): 964965.Google Scholar
N‘ovakovic, D, Waters, HH, D'Elia, JB, Blitzer, A. 2011. Botulinum toxin treatment of adductor spasmodic dysphonia: longitudinal functional outcomes. Laryngoscope 121(3): 606612.Google Scholar
Ravits, JM, Aronson, AE, DeSanto, LW, Dyck, PJ. 1979. No morphometric abnormality recurrent laryngeal nerve in spastic dysphonia. Neurology 29(10): 13761382.Google Scholar
Roark, RM, Dowling, EM, DeGroat, RD, Watson, BC, Schaefer, SD. 1995. Time-frequency analyses of thyroarytenoid myoelectric activity in normal and spasmodic dysphonia subjects. J Speech Hear Res 38(2): 289303.Google Scholar
Sapienza, CM, Walton, S, Murry, T. 2000. Adductor spasmodic dysphonia and muscular tension dysphonia: acoustic analysis of sustained phonation and reading. J Voice 14(4): 502520.Google Scholar
Schaefer, SD. 1983. Neuropathology of spasmodic dysphonia. Laryngoscope 93(9): 11831204.Google Scholar
Schaefer, S, Freeman, F, Finitzo, T, Close, L, Cannito, M, Ross, E, Reisch, J, Maravilla, K. 1985. Magnetic resonance imaging findings and correlations in spasmodic dysphonia patients. Ann Otol Rhinol Laryngol 94(6 Pt 1): 595601.Google Scholar
Schaefer, SD, Finitzo-Hieber, T, Gerling, IJ, Freeman, FJ. 1983. Brainstem conduction abnormalities in spasmodic dysphonia. Ann Otol Rhinol Laryngol 92(1 Pt 1): 5964.Google Scholar
Traube, L. 1871. Zur Lehre von den Larynxaffectionen beim Ileotyphus. Berlin: Verlag Van August Hisschwald, pp. 674678.Google Scholar
Tucker, HM. 1989. Laryngeal framework surgery in the management of spasmodic dysphonia: preliminary report. Ann Otol Rhinol Laryngol. 98(1 Pt 1): 5254.Google Scholar
Van Pelt, F, Ludlow, CL, Smith, PJ. 1994. Comparison of muscle activation patterns in adductor and abductor spasmodic dysphonia. Ann Otol Rhinol Laryngol 103(3): 192200.Google Scholar
Warren, J, Thompson, P. 1998. Drug-induced supraglottic dystonia and spasmodic dysphonia. Mov Disord 13(6): 978979.Google Scholar
Weed, DT, Jewett, BS, Rainey, C, Zealear, DL, Stone, RE, Ossoff, RH, Netterville, JL. 1996. Long-term follow-up of recurrent laryngeal nerve avulsion for the treatment of spastic dysphonia. Ann Otol Rhinol Laryngol 105(8): 592601.Google Scholar

References

Asahi, T, Koh, M, Kashiwazaki, D, Kuroda, S. 2014. Stereotactic neurosurgery for writer’s cramp: report of two cases with an overview of the literature. Stereotact Funct Neurosurg 92:405411.Google Scholar
Cohen, LG, Hallett, M. 1988. Hand cramps: clinical features and electromyographic patterns in a focal dystonia. Neurology 38:10051012.Google Scholar
Epidemiological Study of Dystonia in Europe Collaborative Group. 2000. A prevalence study of primary dystonia in eight European countries. J Neurol 247:787792.Google Scholar
Grigoriu, AI, Dinomais, M, Remy-Neris, O, Brochard, S. 2015. Impact of injection-guiding techniques on the effectiveness of botulinum toxin for the treatment of focal spasticity and dystonia: a systematic review. Arch Phys Med Rehabil 96:2067–2078.Google Scholar
Hallett, M, Albanese, A, Dressler, D, Segal, KR, Simpson, DM, Truong, D, Jankovic, J. 2013. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 67:94114.Google Scholar
Jankovic, J, Van der Linden, C. 1988. Dystonia and tremor induced by peripheral trauma: predisposing factors. J Neurol Neurosurg Psychiatry 51:15121519.Google Scholar
Jost, W, Valerius, K-P 2008. Pictorial Atlas of Botulinum Toxin Injection: Dosage, Localization, Application. Berlin: KVM.Google Scholar
Karp, BI. 2012. Botulinum toxin physiology in focal hand and cranial dystonia. Toxins 4:14041414.Google Scholar
Karp, BI, Cole, RA, Cohen, LG, Grill, S, Lou, JS, Hallett, M. 1994. Long-term botulinum toxin treatment of focal hand dystonia. Neurology 44:7076.Google Scholar
Kruisdijk, JJ, Koelman, JH, Ongerboer de Visser, BW, de Haan, RJ, Speelman, JD. 2007. Botulinum toxin for writer’s cramp: a randomised, placebo-controlled trial and 1-year follow-up. J Neurol Neurosurg Psychiatry 78:264270.Google Scholar
Lungu, C, Karp, BI, Alter, K, Zolbrod, R, Hallett, M. 2011. Long-term follow-up of botulinum toxin therapy for focal hand dystonia: outcome at 10 years or more. Mov Disord 26:750753.Google Scholar
Molloy, FM, Shill, HA, Kaelin-Lang, A, Karp, BI. 2002. Accuracy of muscle localization without EMG: implications for treatment of limb dystonia. Neurology 58:805807.Google Scholar
Nibbeling, E, Schaake, S, Tijssen, MA, Weissbach, A, Groen, JL, Altenmüller, E, Verbeek, DS, Lohmann, K. 2015. Accumulation of rare variants in the arylsulfatase G (ARSG) gene in task-specific dystonia. J Neurol 262:13401343.Google Scholar
Nutt, JG, Muenter, MD, Melton, LJ, 3rd, Aronson, A, Kurland, LT. 1988. Epidemiology of dystonia in Rochester, Minnesota. Adv Neurol 50:361365.Google Scholar
Sheehy, MP, Marsden, CD. 1982. Writers’ cramp: a focal dystonia. Brain 105 (Pt 3):461480.Google Scholar
Simpson, DM, Blitzer, A, Brashear, A, Comella, C, Dubinsky, R, Hallett, M, Jankovic, J, Karp, B, Ludlow, CL, Miyasaki, JM, Naumann, M, So, Y. 2008. Assessment: botulinum neurotoxin for the treatment of movement disorders (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 70:16991706.Google Scholar
Truong, D, Hallett, M, Zachary, C, Dressler, D (Eds). 2014. Manual of Botulinum Toxin Therapy, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Wissel, J, Kabus, C, Wenzel, R, Klepsch, S, Schwarz, U, Nebe, A, Schelosky, L, Scholz, U, Poewe, W. 1996. Botulinum toxin in writer’s cramp: objective response evaluation in 31 patients. J Neurol Neurosurg Psychiatry 61:172175.Google Scholar
Yoshimura, DM, Aminoff, MJ, Olney, RK. 1992. Botulinum toxin therapy for limb dystonias. Neurology 42:627630.Google Scholar

References

Carrillo, RJC (2011). Pterygoid botulinum toxin injection. Philipp J Otolaryngol Head Neck Surg 26:5556.Google Scholar
Ernberg, M, Hedenberg-Magnusson, B, List, T, Svensson, P (2011). Efficacy of botulinum toxin type A for treatment of persistent myofascial TMD pain: a randomized, controlled, double-blind multicenter study. Pain 152:19881996.Google Scholar
Frisardi, G, Iani, C, Sau, G, Frisardi, F, Leornadis, C, Lumbau, A, Enrico, P, Sirca, D, Staderini, EM, Chessa, G (2013). A relationship between bruxism and orofacial dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma. Behav Brain Funct 9:41.Google Scholar
Gjovreku, E, Vyshka, G (2013). Nocturnal bruxism: still a nosological conundrum? WebmedCentral Dentistry 4(5):WMC004234.Google Scholar
Guarda-Nardini, L, Manfredini, D, Salamone, M, Salmaso, L, Tonello, S, Ferronato, G (2008). Efficacy of botulinum toxin in treating myofascial pain in bruxers: a controlled placebo pilot study. Cranio 26:126135.Google Scholar
Laine, CM, Yavuz, ŞU, D’Amico, JM, Gorassini, MA, Türker, KS, Farina, D (2015). Jaw tremor as a physiological biomarker of bruxism. Clin Neurophysiol 126:17461753.Google Scholar
Lee, SJ, McCall, WD, Kim, YK, Chung, SC, Chung, JW (2010). Effect of botulinum toxin injection on nocturnal bruxism: a randomized controlled trial. Am J Phys Med Rehabil 89:1623.Google Scholar
Long, H, Liao, Z, Wang, Y, Liao, L, Lai, W (2012). Efficacy of botulinum toxins on bruxism: an evidence-based review. Int Dent J 62:15.Google Scholar
Mor, N, Tang, C, Blitzer, A (2015). Temporomandibular myofascial pain treated with botulinum toxin injection. Toxins 7:27912800.Google Scholar
Murray, GM, Phanachet, I, Uchida, S, Whittle, T (2001). The role of the human lateral pterygoid muscle in the control of horizontal jaw movements. J Orofac Pain 15: 279292; discussion 292–305.Google Scholar
Nayyar, P, Kumar, P, Nayyar, PV, Singh, A (2014). Botox: broadening the horizon of dentistry. J Clin Diagn Res 8:ZE25ZE29.Google Scholar
Onodera, K, Sato, S (2008). Bruxism evaluating sheet. United States Patent Application: 20080211123. www.freepatentsonline.com/y2008/0211123.html (accessed 11 October 2016).Google Scholar
Orlova, O, Soikher, MI, Soikher, MG, Mingazova, L, Kotlyarov, V, Slavicek, G (2010). Therapeutic application of botulinum toxin A in patients with local muscle dystonia and oral dyskinesia. J Stomat Occ Med 3:2328.Google Scholar
Persaud, R, Garas, G, Silva, S, Stamatoglou, C, Chatrath, P, Patel, K (2013). An evidence-based review of botulinum toxin (Botox) applications in non-cosmetic head and neck conditions. JRSM Short Rep 4:10.Google Scholar
Shim, YJ, Lee, MK, Kato, T, Park, HU, Heo, K, Kim, ST (2014). Effects of botulinum toxin on jaw motor events during sleep in sleep bruxism patients: a polysomnographic evaluation. J Clin Sleep Med 10: 291298.Google Scholar
Sposito, M, Teixeira, S (2014). Botulinum toxin A for bruxism: a systematic review. Acta Fisiatr 21:201204.Google Scholar
Tintner, R, Jankovic, J (2002). Botulinum toxin type A in the management of oromandibular dystonia and bruxism. In: Brin, MF, Hallett, M, J (Eds), Jankovic. Scientific and Therapeutic Aspects of Botulinum Toxin. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar

References

Aramideh, M, Ongerboer de Visser, BW, Devriese, PP, Bour, LJ, Speelman, JD (1994) Electromyographic features of levator palpebrae superioris and orbicularis oculi muscles in blepharospasm. Brain 117:2738.Google Scholar
Aramideh, M, Ongerboer de Visser, BW, Brans, JW, Koelman, JH, Speelman, JD (1995) Pretarsal application of botulinum toxin for treatment of blepharospasm. J Neurol Neurosurg Psychiatry 59:309311.Google Scholar
Ben Simon, GJ, Macedo, AA, Schwarcz, RM, Wang, DY, McCann, JD, Goldberg, RA (2005) Frontalis suspension for upper eyelid ptosis: evaluation of different surgical designs and suture materials. Am J Ophthalmol 140:887885.Google Scholar
Boghen, D, Tozlovanu, V, Iancu, A, Forget, R (2002) Botulinum toxin therapy for apraxia of lid opening. Ann NY Acad Sci 956:482483.Google Scholar
Dewey, RB Jr, Maraganore, DM (1994) Isolated eyelid opening apraxia: report of a new levodopa-responsive syndrome. Neurology 44:17521754.Google Scholar
Dressler, D, Karapantzou, C, Rohrbach, S, Schneider, S, Laskawi, R (2017) Frontalis suspension surgery to treat patients with blepharospasm and eyelid opening apraxia: long-term results. J Neural Transm 124:253–257.Google Scholar
Forget, R, Tozlovanu, V, Iancu, A, Boghen, D (2002) Botulinum toxin improves lid opening delays in blepharospasm-associated apraxia of lid opening. Neurology 58:18431846.Google Scholar
Georgescu, D, Vagefi, MR, McMullan, TFW, McCann, JD, Anderson, RL (2008) Upper eyelid myectomy in blepharospasm with associated apraxia of lid opening. Am J Ophthalmol 145:541547.Google Scholar
Grivet, D, Robert, PY, Thuret, G, De Feligonde, OP, Gain, P, Maugery, J, Adenis, JP (2005) Assessment of blepharospasm surgery using an improved disability scale: study of 138 patients. Ophthal Plast Reconstr Surg 21:230234.Google Scholar
Hayashi, K, Katori, N, Kasai, K, Kamisasanuki, T, Kokubo, K, Ohno-Matsui, K (2013) Comparison of nylon monofilament suture and polytetrafluoroethylene sheet for frontalis suspension surgery in eyes with congenital ptosis. Am J Ophthalmol 155:654663.Google Scholar
Jost, W (2007) Bildatlas der Botulinumtoxin-Injektion: Dosierung, Lokalisation, Anwendung. Marburg: KVM.Google Scholar
Karapantzou, C (2013) Blepharospasmus vom Levator-Inhibitions-Typ – Analyse von Patienten nach Lid-Frontalis-Suspensions Operation und Literaturübersicht. Medical Dissertation, Göttingen.Google Scholar
Karapantzou, C, Dressler, D, Rohrbach, S, Laskawi, R (2014) Frontalis suspension surgery to treat patients with essential blepharospasm and apraxia of eyelid opening-technique and results. Head Face Med 10:44.Google Scholar
Kollewe, K, Mohammadi, B, Köhler, S, Pickenbrock, H, Dengler, R, Dressler, D (2015) Blepharospasm: long-term treatment with either Botox®, Xeomin® or Dysport®. J Neural Transm 122:427431.Google Scholar
Lee, KC, Finley, R, Miller, B (2004) Apraxia of lid opening: dose-dependent response to carbidopa-levodopa. Pharmacotherapy 24:401403.Google Scholar
Lemagne, JM, Liu, C (1991) Complications of frontalis suspension using polytetrafluoroethylene (Gore-Tex). Orbit 10:2931.Google Scholar
Marsden, CD (1976) Blepharospasm-oromandibular dystonia syndrome (Brueghel’s syndrome): a variant of adult-onset torsion dystonia? J Neurol Neurosurg Psychiatry 39:12041209.Google Scholar
Moss, HL (1982) Prothesis for blepharoptosis and blepharospasm. J Am Optom Assoc 53:661667.Google Scholar
Nüssgens, Z, Roggenkämper, P (1995) Long-term treatment of blepharospasm with botulinum toxin type A. Ger J Ophthalmol 4:363367.Google Scholar
Patel, BC, Anderson, RL (1995) Blepharospasm and related facial movement disorders. Curr Opin Ophthalmol 6:8699.Google Scholar
Patil, B, Foss, AJE (2009) Upper lid orbicularis muscle strip and sequential brow suspension with autologous fascia lata is beneficial for selected patients with essential blepharospasm. Eye 23:15491553.Google Scholar
Putterman, AM, Urist, M (1972) Treatment of essential blepharospasm with a frontalis sling. Arch Ophthalmol 88:278281.Google Scholar
Ramasamy, B, Rowe, F, Freeman, G, Owen, M, Noonan, C (2007) Modified Lundie loops improve apraxia of eye lid opening. J Neuroophthalmol 27:3235.Google Scholar
Rana, AQ, Shah, R (2012) Combination of blepharospasm and apraxia of eye lid opening: a condition resistant to treatment. Acta Neurol Belg 112:9596.Google Scholar
Roggenkämper, P, Nüssgens, Z (1993) Frontalis suspension in the treatment of essential blepharospasm unresponsive to botulinum toxin therapy: first results. Ger J Ophthalmol 2: 426428.Google Scholar
Roggenkämper, P, Nüssgens, Z (1997) Frontalis suspension in the treatment of essential blepharospasm unresponsive to botulinum toxin therapy: long-term results. Graefe’s Arch Clin Exp Ophthalmol 235: 486489.Google Scholar
Scott, AB, Kennedy, RA, Stubbs, HA (1985) Botulinum A toxin injection as a treatment for blepharospasm. Arch Ophthalmol 103:347350.Google Scholar
Takahashi, Y, Leibovitch, I, Kakzaki, H (2010) Frontalis suspension surgery in upper eyelid blepharoptosis. Open Ophthamol J 4:9197.Google Scholar
Wabbels, B, Roggenkämper, P (2007) Long-term follow up of patients with frontalis sling operation in the treatment of essential blepharospasm unresponsive to botulinum toxin therapy. Graefe’s Arch Clin Exp Ophthalmol 245: 4550.Google Scholar
Wasserman, B, Springer, DT, Helveston, EM (2001) Comparison of materials used in frontalis suspension surgery. Arch Ophthalmol 118:687691.Google Scholar
Yamada, S, Matsuo, K, Hirayama, M, Sobue, G (2005) The effects of levodopa on apraxia of lid opening: a case report. Neurology 62:830831.Google Scholar

References

Dressler, D, Kupsch, A, Seitzinger, A, Paus, S (2014) The Dystonia Discomfort Scale (DDS): a novel instrument to monitor the temporal profile of botulinum toxin therapy in cervical dystonia. Eur J Neurol 21:459462.Google Scholar
Moore, P, Naumann, M (2003) General and clinical aspects of treatment with botulinum toxin. In: Moore, P, Naumann, M (eds) Handbook of Botulinum Toxin Treatment, 2nd edition. Blackwell Science, Malden, MA, pp. 6869.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×