Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T19:24:47.623Z Has data issue: false hasContentIssue false

6 - The Formation Experiment in the Age of Hypermedia and Distance Learning

Published online by Cambridge University Press:  25 August 2009

Hartmut Giest
Affiliation:
Institute of Primary School Education, University of Potsdam, Germany
Bert van Oers
Affiliation:
Vrije Universiteit, Amsterdam
Wim Wardekker
Affiliation:
Vrije Universiteit, Amsterdam
Ed Elbers
Affiliation:
Universiteit Utrecht, The Netherlands
René van der Veer
Affiliation:
Universiteit Leiden
Get access

Summary

It is well known that learning tasks and demands in science education present substantial difficulties for the majority of students (Aikenhead, 1994; Solomon & Aikenhead, 1994; Yager, 1996; see also Mikkilä-Erdmann 2001; Vosniadou et al. 2001; Wiser & Amin 2001). International comparisons (e.g., TIMSS – Third International Mathematics and Science Study, Martin & Kelly 1996; Baumert, Lehman, et al. 1997; and PISA – Programme for International Student Assessment, http://www.pisa.oecd.org, Baumert et al., 2001) reveal considerable problems concerning application tasks, problem solving, scientific argumentation, and the like, whereas reproductive tasks and skills are better mastered. In my view these results indicate that most of the students have tremendous problems in theoretical thinking. Science education suffers – among other shortcomings – from a predominant orientation toward isolated, nonsituated facts that are seldom applied to real-life situations, and this orientation leads to difficulties in understanding and a loss of sense and motivation in many students. One reason for this situation is the preference in today's classroom for an often unrelated, single-discipline approach as a means to interpretation and understanding. This approach is no longer viable, however, because mankind's problems are becoming more and more complex and their understanding and solution require the application of a transdisciplinary approach to address this complexity.

Mankind's problems are a consequence of developmental conflicts of complex systems (ecology, economy, climate, democracy). These systems are characterized by opposing tendencies.

Type
Chapter
Information
The Transformation of Learning
Advances in Cultural-Historical Activity Theory
, pp. 100 - 126
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adey, P. S., & Shayer, M. (1994). Really raising standards: Cognitive intervention and academic achievement. London: Routledge.Google Scholar
Aikenhead, G. (1994). A review of research into the outcomes of STS teaching. In Boersma, K., Kortland, K., & Trommel, J. (Eds.), Science and technology education in a demanding society (7th IOSTE Symposium) (pp. 13–24). Enschede: National Institute for Curriculum Development (SLO).Google Scholar
Allal, L., & Ducrey, P. (2000). Assessment of or in the zone of proximal development. Learning and Instruction, 10 (2), 137–152.CrossRefGoogle Scholar
Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.Google Scholar
Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., Stanat, P., Tillmann, K.-J., & Weiß, M. (Eds.). (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.CrossRefGoogle Scholar
Baumert, J., Lehmann, R., et al. (1997). TIMSS – Mathematisch-naturwissenschaftlicher Unterricht im internationalen Vergleich. Opladen: Leske + Budrich.CrossRefGoogle Scholar
Black, P., & Atkin, J. M. (Eds.). (1996). Changing the subject: Innovation in science, mathematics and technology education. London: Routledge in association with OECD.Google Scholar
Bruner, J. (1970). Der Prozeß der Erziehung. Düsseldorf: Schwann.Google Scholar
Carugati, F. (1999). From Piaget and Vygotsky to learning activity. In Hedegaard, M. & Lompscher, J. (Eds.), Learning activity and development (pp. 211–234). Aarhus: Aarhus University Press.Google Scholar
Chaiklin, S. (2003). The zone of proximal development in Vygotsky's analysis of learning and instruction. In Kozulin, A., Gindis, B., Ageyev, V., & Miller, S. (Eds.), Vygotsky's educational theory and practice in cultural context (pp. 39–64). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Davydov, V. V. (1990). Types of generalization in instruction: Logical and psychological problems in the structuring of school curricula (J. Teller, Trans.). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
Davydov, V. V. (1998). The concept of developmental teaching. Journal of Russian and East European Psychology, 36 (4), 11–36.CrossRefGoogle Scholar
Davydov, V. V. (1999). What is real learning activity? In Hedegaard, M. & Lompscher, J. (Eds.), Learning activity and development (pp. 123–138). Aarhus: Aarhus University Press.Google Scholar
Engeström, Y. (1978). Learning by expanding. Helsinki: Orienta Konsultit Oy.Google Scholar
Engeström, Y. (1990). Learning, working and imaging: Twelve studies in activity theory. Helsinki: Orienta Konsultit Oy.Google Scholar
Engeström, Y., Miettinen, R., & Punamäki, R.-L. (Eds.). (1999). Perspectives on activity theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fichtner, B. (1999). Activity theory as methodology: The epistemological revolution of the computer and the problem of its appropriation. In Hedegaard, M. & Lompscher, J. (Eds.), Learning activity and development (pp. 71–92). Aarhus: Aarhus University Press.Google Scholar
Fricke, R. (1995a). Evaluation von Multimedia. In Issing, L. J. & Klimsa, P. (Eds.), Information und Lernen mit Multimedia – ein Lehrbuch zur Multimedia-Didaktik (pp. 401–413). Heidelberg: Springer.
Fricke, R. (1995b). Über den richtigen Umgang mit Qualitätskriterien für Lernsoftware. Arbeiten aus dem Institut für Empirische Pädagogik und Instruktionspsychologie der TU Braunschweig, Bericht Nr. 14 (3/95).
Giest, H. (1997). Zur kausalgenetischen Methode in der Unterrichtsforschung. In Glumpler, E. & Luchtenberg, S. (Eds.), Handbuch Grundschulforschung (Vol. 1, pp. 167–179). Weinheim: Beltz, Deutscher Studienverlag.Google Scholar
Giest, H., & Lompscher, J. (2003). Formation of learning activity and theoretical thinking in science teaching. In Kozulin, A., Gindis, B., Ageyev, V., & Miller, S. (Eds.), Vygotsky's educational theory and practice in cultural context (pp. 267–288). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Giest, H., & Walgenbach, W. (2000). Entwicklung von Multimedia-Bausteinen zur Ökologischen Grundbildung. In Jänkel, R. & Loschelder, W. (Eds.), Umweltforschung an der Universität Potsdam (pp. 23–31). (Brandenburgische Umwelt Berichte -BUB-, vol. 8)
Giest, H., & Walgenbach, W. (2002). System-learning – a new challenge to education – bridging special field to transdisciplinary learning. In Zeltserman, B. (Ed.), Obrazovanije 21 veka: dostizhenija i perspektivij. Mezhdunarodnij sbornik teoreticheskikh, metodicheskikh i prakticheskikh rabot po problemam obrazovanija (Education in the 21st century: Results and perspectives. International anthology of theoretical, didactical and practical work on problems of education) (pp. 21–37). Riga: Pedagogiskais centrs “Eksperiments.”Google Scholar
Glaser, R., & Bassock, M. (1989). Learning theory and the study of instruction. Annual Review of Psychology, 40, 631–666.CrossRefGoogle Scholar
Glasersfeld, E. v. (1995). Radical constructivism: A way of knowing and learning. London: Falmer Press.CrossRefGoogle Scholar
Heisenberg, W. (1977). Tradition der Wissenschaft. Munich: Hanser. http://www.pisa. oecd.org.Google Scholar
Huber, L. (2001). Stichwort: Fachliches Lernen (Headword: Domain-specific learning). Zeitschrift für Erziehungswissenschaft, 3 (1), 307–331.CrossRefGoogle Scholar
Kurzweil, R. (2000). The age of spiritual machines. Homo sapiens: Leben im 21. Jahrhundert – was bleibt vom Menschen?Munich: Econ.Google Scholar
Lektorskij, V. A. (1990). Activity: Theory, methodology, and problems. Orlando, FL: Paul M. Deutsch Press.Google Scholar
Leontiev, A. N. (1978). Activity, consciousness, personality. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Leontiev, A. N. (1981). Problems of the development of mind. Moscow: Progress.Google Scholar
Lompscher, J. (1999). Learning activity and its formation: Ascending from the abstract to the concrete. In Hedegaard, M. & Lompscher, J. (Eds.), Learning activity and development (pp. 139–166). Aarhus: Aarhus University Press.Google Scholar
Lompscher, J. (2002). The category of activity as a principal constituent of cultural-historical psychology. In Robbins, D. & Stetsenko, A. (Eds.), Voices within Vygotsky's non-classical psychology: Past, present, future (pp. 79–99). New York: Nova Science.Google Scholar
Mähler, C. (1999). Naive Theorien im kindlichen Denken. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 31 (2), 55–65.CrossRefGoogle Scholar
Mandl, H. (1997). How should we learn to really learn? (Interview). Learnline, 4, 195–199.Google Scholar
Martin, M. O., & Kelly, D. L. (Eds.). (1996). Third international mathematics and science study. Chestnut Hill, MA: Boston College.Google Scholar
Maturana, H. R., & Pörksen, B. (2002). Der Schüler lernt den Lehrer. Pädagogik, 7–8, 75–77.Google Scholar
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12 (1), 107–120.CrossRefGoogle Scholar
Meer, E. v.d. (1996). Gesetzmäßigkeiten und Steuerungsmöglichkeiten des Wissenserwerbs. In Weinert, F. E. (Eds.), Psychologie des Lernens und der Instruktion (pp. 209–248). Göttingen: Hogrefe. (Enzyklopädie der Psychologie, Serie Pädagogische Psychologie, vol. 2)Google Scholar
Merkys, G. (1996). Kultur-historische Schule und Methodologie der pädagogisch-psychologischen Forschung. In Lompscher, J. (Eds.), Entwicklung und Lernen aus kulturhistorischer Sicht (pp. 143–162). Marburg: BdWi-Verlag. (Internationale Studien zur Tätigkeitstheorie, vol. 4/1)Google Scholar
Merrill, M. D. (1991). Constructivism and instructional design. Educational Technology, 31, 45–53.Google Scholar
Metz, K. E. (1995). Reassessment of developmental constraints on children's science instruction. Review of Educational Research, 65 (2), 93–127.CrossRefGoogle Scholar
Miettinen, R. (2002). Varieties of constructivism in education: Where do we stand?Lifelong Learning in Europe, 1, 41–48.Google Scholar
Mikkilä-Erdmann, M. (2001). Improving conceptual change concerning photosynthesis through text design. Learning and Instruction, 11 (3), 241–257.CrossRefGoogle Scholar
Mugler, F., & Landbeck, R. (2000). Learning, memorization and understanding among distance learners in the South Pacific. Learning and Instruction 10 (2), 179– 202.CrossRefGoogle Scholar
Piaget, J. (1970). L'évolution intellectuelle entre l'adolescence et lâge adulte (Intellectual evolution from adolescence to adulthood). Human Development (1972) 15, 1–15.Google Scholar
Reigeluth, C. M. (Ed.). (1983). Instructional-design theories and models: An overview of their current status. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Reigeluth, C. M. (Ed.). (1987). Instructional theories in action. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Reinhold, P., & Bünder, W. (2001). Stichwort: Fächerübergreifender Unterricht (Headword: Transdisciplinary classroom). Zeitschrift für Erziehungswissenschaft, 3 (1), 334–357.Google Scholar
Roth, G. (2002). Fühlen, Denken, Handeln: Wie das Gehirn unser Verhalten steuert. Frankfurt am Main: Suhrkamp.Google Scholar
Saldern, M. v. (1998). Die Aufgabenfülle der Grundschule und ihrer Pädagogik. Zeitschrift für Pädagogik, 44 (6), 907–924.Google Scholar
Sodian, B. (1998). Wissenschaftliches Denken. In Rost, D. H., Handwörterbuch der Pädagogischen Psychologie (pp. 566–570). Weinheim: Beltz, Psychologie Verlags Union.Google Scholar
Solomon, J., & Aikenhead, G. (Eds.). (1994). STS Education: International perspectives on reform. New York: Teachers College Press.Google Scholar
Tenenbaum, G., Naidu, S., Jegede, O., & Austin, J. (2001). Constructivist pedagogy in conventional on-campus and distance learning practice: An exploratory investigation. Learning and Instruction, 11 (2), 87–112.CrossRefGoogle Scholar
Vosniadou, S., Ioannides, A., Dimitrakopoulou, A., & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11 (4–5), 381–420.CrossRefGoogle Scholar
Walgenbach, W. (2000). Interdisziplinäre Systembildung – Eine Aktualisierung bildungstheoretischer Ansätze. Frankfurt am Main: Peter Lang.Google Scholar
Wiser, M., & Amin, T. (2001). “Is heat hot?” Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11 (4–5), 331–356.CrossRefGoogle Scholar
Wulfeck, W. H., Dickieson, J. L., Apple, J., & Vogt, L. (1993). The automation of curriculum development. Using the Authoring Instructional Materials (AIM) System. Instructional Science, 21, 255–267.CrossRefGoogle Scholar
Vygotsky, L. S. (1964). Denken und Sprechen. Berlin: Akademie Verlag.Google Scholar
Vygotsky, L. S. (1987). Ausgewählte Schriften (Vol. 2). Berlin: Volk und Wissen.Google Scholar
Vygotsky, L. S. (1992). Geschichte der höheren psychischen Funktionen. Münster and Hamburg: Lit. (Fortschritte der Psychologie, vol. 5)Google Scholar
Vygotsky, L. S. (1998). Thinking and speech. In Reiber, R. W. & Carton, A. S. (Eds.), The collected works of L. S. Vygotsky: Vol. 1. Problems of general psychology (pp. 39–285). New York: Plenum Press.CrossRefGoogle Scholar
Yager, R. E. (Ed.). (1996). Science, technology, society: As reform in science education. Albany: State University of New York Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×