Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T21:33:42.692Z Has data issue: false hasContentIssue false

2 - Merged Minds

Integration of Bottom-Up and Top-Down Processes for Social Interactions

from Part I - Foundations

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

Social cognition is composed of at least two major types of processes – bottom up and top down. Bottom-up processes are stimulus-driven, fairly automatic and fast. Top-down processes, on the other hand, require effort; they are deliberate and flexible. The mirror neuron system (MNS) is a recently discovered neural system that seems to map fairly well on bottom-up social processes. During social interactions, two individuals internally mirror each other’s actions via the MNS, hence connecting their bottom-up processes. At the same time, top-down mechanisms in each interacting person modulate the bottom-up activity. By doing so, each individual’s top-down mechanism also influences the other social agent via the bottom-up activity. Here, we discuss the two processes and how they interact with each other. We propose that the interplay between bottom-up and top-down processes creates a strong and dynamic link between the minds of two individuals and suggest a mechanistic model for how these processes may transform two minds into one functional social unit.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 22 - 37
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277. doi: 10.1038/nrn1884.CrossRefGoogle ScholarPubMed
Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955960. doi: 10.1038/nn1481.CrossRefGoogle ScholarPubMed
Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Bernhardt, B. C., & Singer, T. (2012). The neural basis of empathy. Annual Review of Neuroscience, 35, 123. doi: 10.1146/annurev-neuro-062111-150536.CrossRefGoogle ScholarPubMed
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., & Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, 324(5925), 403406. doi: 10.1126/science.1166818.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.CrossRefGoogle ScholarPubMed
Christov Moore, L., & Iacoboni, M. (2014). Emotions in interaction: Towards a supraindividual study of empathy. In Martinovsky, B. (Ed.), Advances in group decision and negotiation: Emotion in group decision and negotiation. New York: Springer, pp. 1–32.Google Scholar
Cross, K. A., & Iacoboni, M. (2014a). Neural systems for preparatory control of imitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644). doi: 10.1098/rstb.2013.0176.CrossRefGoogle ScholarPubMed
Cross, K. A., (2014b). To imitate or not: Avoiding imitation involves preparatory inhibition of motor resonance. NeuroImage. doi: 10.1016/j.neuroimage.2014.01.027.CrossRefGoogle Scholar
Cross, K. A., Torrisi, S., Losin, E. A., & Iacoboni, M. (2013). Controlling automatic imitative tendencies: Interactions between mirror neuron and cognitive control systems. NeuroImage. doi: 10.1016/j.neuroimage.2013.06.060.CrossRefGoogle Scholar
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 26082611.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667. doi: 10.1126/science.1106138.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593.CrossRefGoogle ScholarPubMed
Goldman, A. I. (2008). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford and New York: Oxford University Press.Google Scholar
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377396.CrossRefGoogle ScholarPubMed
Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31(1), 122; discussion 22–58. doi: 10.1017/S0140525X07003123.CrossRefGoogle ScholarPubMed
Hurley, S. L., & Chater, N. (2005). Perspectives on imitation: From neuroscience to social science. Cambridge, MA: MIT Press.Google Scholar
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60, 653670. doi: 10.1146/annurev.psych.60.110707.163604.CrossRefGoogle ScholarPubMed
Ishida, H., Nakajima, K., Inase, M., & Murata, A. (2010). Shared mapping of own and others’ bodies in visuotactile bimodal area of monkey parietal cortex. Journal of Cognitive Neuroscience, 22(1), 8396. doi:10.1162/jocn.2009.21185CrossRefGoogle ScholarPubMed
Kahneman, D. (2013). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: A potential mechanism for action suppression? Neuron, 64(6), 922930. doi: 10.1016/j.neuron.2009.12.010.CrossRefGoogle ScholarPubMed
Losin, E. A., Cross, K. A., Iacoboni, M., & Dapretto, M. (2013). Neural processing of race during imitation: Self-similarity versus social status. Human Brain Mapping. doi: 10.1002/hbm.22287.CrossRefGoogle Scholar
Losin, E. A., Iacoboni, M., Martin, A., Cross, K. A., & Dapretto, M. (2012a). Race modulates neural activity during imitation. NeuroImage, 59(4), 35943603. doi: 10.1016/j.neuroimage.2011.10.074.CrossRefGoogle ScholarPubMed
Losin, E. A., Iacoboni, M., Martin, A., & Dapretto, M. (2012b). Own-gender imitation activates the brain’s reward circuitry. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsr055.CrossRefGoogle Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology: CB, 20, 750756. doi: 10.1016/j.cub.2010.02.045.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71(3), 491507.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11 (4), 264274. doi: 10.1038/nrn2805.CrossRefGoogle ScholarPubMed
Shepherd, S. V., Klein, J. T., Deaner, R. O., & Platt, M. L. (2009). Mirroring of attention by neurons in macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 94899494. doi: 10.1073/pnas.0900419106.CrossRefGoogle ScholarPubMed
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162. doi: 10.1126/science.1093535.CrossRefGoogle Scholar
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49(4), 30993109. doi: 10.1016/j.neuroimage.2009.11.015.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×