Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-23T21:37:57.158Z Has data issue: false hasContentIssue false

20 - Extending Antibody Fragment Half-Lives with Albumin

from PART VIII - PROLONGATION OF SERUM HALF-LIFE

Published online by Cambridge University Press:  15 December 2009

Melvyn Little
Affiliation:
Affimed Therapeutics AG
Get access

Summary

Albumin is the most abundant protein in serum and acts as a multifunctional carrier for many endogenous small molecules, as diverse as fatty acids, metals, bilirubin, amino acids, and vitamins that ensure wide biodistribution of these compounds throughout the body. In addition, its remarkably long half-life of 19 days in humans makes albumin a versatile and preferred carrier for small molecule and protein therapeutics. A receptor-mediated pathway controlled by the neonatal Fc receptor (FcRn) has recently been shown to be essential for regulation of the long half-life of albumin as well as IgG. This new discovery will strongly influence the further development of albumin-fused and albumin-targeting diagnostics and therapeutics.

The IgG class has a remarkably long serum half-life of 21 days in humans. The utility of the mAbs spans across clinical settings such as treatment of cancer, chronic inflammatory and autoimmune diseases as well as transplantation and cardiovascular disease. Such treatments require large quantities of mAbs; a restriction that limits their use is the manufacturing cost in mammalian production systems. The most promising alternatives are production in yeast and bacteria of Ab derived fragments such as the Fab, F(ab′)2 and single-chain Fv (ScFv) (Figure 20.1A–C). These lack the Fc part and Fc-associated functions, which may be favorable when complement activation and FcγR-mediated effector functions are inconvenient. However, elimination of the Fc also removes the half-life extending mechanism mediated by interaction of Fc with FcRn.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spiegelberg, H.L. and Fishkin, B.G., The catabolism of human G immunoglobulins of different heavy chain subclasses. 3. The catabolism of heavy chain disease proteins and of Fc fragments of myeloma proteins. Clin Exp Immunol, 1972. 10(4): pp. 599–607.Google Scholar
Waldmann, T.A. and Strober, W., Metabolism of immunoglobulins. Prog Allergy, 1969. 13: pp. 1–110.Google ScholarPubMed
Adams, G.P. and Weiner, L.M., Monoclonal antibody therapy of cancer. Nat Biotechnol, 2005. 23(9): pp. 1147–57.CrossRefGoogle ScholarPubMed
Carter, P.J., Potent antibody therapeutics by design. Nat Rev Immunol, 2006. 6(5): pp. 343–57.CrossRefGoogle ScholarPubMed
Reichert, J.M., Monoclonal antibodies in the clinic. Nat Biotechnol, 2001. 19(9): pp. 819–22.CrossRefGoogle ScholarPubMed
Schrama, D., Reisfeld, R.A., and Becker, J.C., Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov, 2006. 5(2): pp. 147–59.CrossRefGoogle ScholarPubMed
Scott, C.T., The problem with potency. Nat Biotechnol, 2005. 23(9): pp. 1037–9.CrossRefGoogle ScholarPubMed
Roopenian, D.C. and Akilesh, S., FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol, 2007. 7(9): pp. 715–25.CrossRefGoogle ScholarPubMed
Chapman, A.P., et al., Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol, 1999. 17(8): pp. 780–3.CrossRefGoogle ScholarPubMed
Burmeister, W.P., et al., Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature, 1994. 372(6504): pp. 336–43.CrossRefGoogle ScholarPubMed
Burmeister, W.P., Huber, A.H., and Bjorkman, P.J., Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature, 1994. 372(6504): pp. 379–83.CrossRefGoogle ScholarPubMed
West, A.P. and Bjorkman, P.J., Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor. Biochemistry, 2000. 39(32): pp. 9698–708.CrossRefGoogle ScholarPubMed
Hammer, G.E., Kanaseki, T., and Shastri, N., The final touches make perfect the peptide-MHC class I repertoire. Immunity, 2007. 26(4): pp. 397–406.CrossRefGoogle ScholarPubMed
Akilesh, S., et al., Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol, 2007. 179(7): pp. 4580–8.CrossRefGoogle ScholarPubMed
Andersen, J.T., Dee Qian, J., and Sandlie, I., The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol, 2006. 36(11): pp. 3044–51.CrossRefGoogle Scholar
Anderson, C.L., et al., Perspective – FcRn transports albumin: relevance to immunology and medicine. Trends Immunol, 2006. 27(7): pp. 343–8.CrossRefGoogle Scholar
Chaudhury, C., et al., Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry, 2006. 45(15): pp. 4983–90.CrossRefGoogle ScholarPubMed
Chaudhury, C., et al., The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med, 2003. 197(3): pp. 315–22.CrossRefGoogle ScholarPubMed
Vaughn, D.E. and Bjorkman, P.J., Structural basis of pH-dependent antibody binding by the neonatal Fc receptor. Structure, 1998. 6(1): pp. 63–73.CrossRefGoogle ScholarPubMed
Vaughn, D.E., et al., Identification of critical IgG binding epitopes on the neonatal Fc receptor. J Mol Biol, 1997. 274(4): pp. 597–607.CrossRefGoogle ScholarPubMed
Brambell, F.W., The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet, 1966. 2(7473): pp. 1087–93.CrossRefGoogle Scholar
Brambell, F.W., Hemmings, W.A., and Morris, I.G., A theoretical model of gamma-globulin catabolism. Nature, 1964. 203: pp. 1352–4.CrossRefGoogle ScholarPubMed
Fahey, J.L. and Robinson, A.G., Factors controlling serum gamma-globulin concentration. J Exp Med, 1963. 118: pp. 845–68.CrossRefGoogle ScholarPubMed
Halliday, R., The production of antibodies by young rats. Proc R Soc Lond B Biol Sci, 1957. 147(926): pp. 140–4.CrossRefGoogle ScholarPubMed
Ghetie, V. and Ward, E.S., Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol, 2000. 18: pp. 739–66.CrossRefGoogle ScholarPubMed
Simister, N.E. and Mostov, K.E., An Fc receptor structurally related to MHC class I antigens. Nature, 1989. 337(6203): pp. 184–7.CrossRefGoogle Scholar
Story, C.M., Mikulska, J.E., and Simister, N.E., A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med, 1994. 180(6): pp. 2377–81.CrossRefGoogle Scholar
Medesan, C., et al., Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol, 1997. 158(5): pp. 2211–7.Google ScholarPubMed
Christianson, G.J., et al., Beta 2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J Immunol, 1997. 159(10): pp. 4781–92.Google ScholarPubMed
Ghetie, V., et al., Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol, 1996. 26(3): pp. 690–6.CrossRefGoogle ScholarPubMed
Israel, E.J., et al., Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J Immunol, 1995. 154(12): pp. 6246–51.Google ScholarPubMed
Israel, E.J., et al., Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology, 1996. 89(4): pp. 573–8.CrossRefGoogle ScholarPubMed
Junghans, R.P. and Anderson, C.L., The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA, 1996. 93(11): pp. 5512–6.CrossRefGoogle ScholarPubMed
Roopenian, D.C., et al., The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol, 2003. 170(7): pp. 3528–33.CrossRefGoogle ScholarPubMed
Bitonti, A.J., et al., Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci USA, 2004. 101(26): pp. 9763–8.CrossRefGoogle ScholarPubMed
Dumont, J.A., et al., Delivery of an erythropoietin-Fc fusion protein by inhalation in humans through an immunoglobulin transport pathway. J Aerosol Med, 2005. 18(3): pp. 294–303.CrossRefGoogle ScholarPubMed
Kanaya, K., et al., Combined gene therapy with adenovirus vectors containing CTLA4Ig and CD40Ig prolongs survival of composite tissue allografts in rat model. Transplantation, 2003. 75(3): pp. 275–81.CrossRefGoogle ScholarPubMed
Low, S.C., et al., Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis. Hum Reprod, 2005. 20(7): pp. 1805–13.CrossRefGoogle ScholarPubMed
Shen, Y., Young, B., and Lipman, M.L., Suppression of the cell-mediated immune response by a Fas-immunoglobulin fusion protein. Transplantation, 2006. 81(7): pp. 1041–8.CrossRefGoogle ScholarPubMed
Ghetie, V., et al., Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol, 1997. 15(7): pp. 637–40.CrossRefGoogle ScholarPubMed
Hinton, P.R., et al., Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem, 2004. 279(8): pp. 6213–6.CrossRefGoogle ScholarPubMed
Hinton, P.R., et al., An engineered human IgG1 antibody with longer serum half-life. J Immunol, 2006. 176(1): pp. 346–56.CrossRefGoogle ScholarPubMed
Dall'Acqua, W.F., Kiener, P.A., and H. Wu, Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem, 2006. 281(33): pp. 23514–24.CrossRefGoogle Scholar
Medesan, C., et al., Localization of the site of the IgG molecule that regulates maternofetal transmission in mice. Eur J Immunol, 1996. 26(10): pp. 2533–6.CrossRefGoogle ScholarPubMed
Kenanova, V., et al., Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res, 2005. 65(2): pp. 622–31.Google ScholarPubMed
Hornick, J.L., et al., Single amino acid substitution in the Fc region of chimeric TNT-3 antibody accelerates clearance and improves immunoscintigraphy of solid tumors. J Nucl Med, 2000. 41(2): pp. 355–62.Google ScholarPubMed
Schultze, H.E. and Heremans, J.F., Molecular Biology of Human Proteins: With Special Reference to Plasma Proteins. Vol. 1: Nature and Metabolism of Extracellular Proteins. Elsevier, 1966.Google Scholar
Peters, T.J., All about Albumin: Biochemistry, Genetics, and Medical Applications. Academic Press, 1996.Google Scholar
Waldmann, T.A. and Terry, W.D., Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. J Clin Invest, 1990. 86(6): pp. 2093–8.CrossRefGoogle ScholarPubMed
Wani, M.A., et al., Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci USA, 2006. 103(13): pp. 5084–9.CrossRefGoogle ScholarPubMed
Borvak, J., et al., Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol, 1998. 10(9): pp. 1289–98.CrossRefGoogle Scholar
Ward, E.S., et al., Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol, 2003. 15(2): pp. 187–95.CrossRefGoogle ScholarPubMed
Blumberg, R.S., et al., A major histocompatibility complex class I-related Fc receptor for IgG on rat hepatocytes. J Clin Invest, 1995. 95(5): pp. 2397–402.CrossRefGoogle Scholar
Telleman, P. and Junghans, R.P., The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology, 2000. 100(2): pp. 245–51.CrossRefGoogle Scholar
Haymann, J.P., et al., Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol, 2000. 11(4): pp. 632–9.Google ScholarPubMed
McCarthy, K.M., Yoong, Y., and Simister, N.E., Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci, 2000. 113(Pt 7): pp. 1277–85.Google Scholar
Antohe, F., et al., Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol, 2001. 62(2): pp. 93–105.CrossRefGoogle ScholarPubMed
Ellinger, I., et al., IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur J Immunol, 1999. 29(3): pp. 733–44.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Firan, M., et al., The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol, 2001. 13(8): pp. 993–1002.CrossRefGoogle ScholarPubMed
Kristoffersen, E.K., Human placental Fc gamma-binding proteins in the maternofetal transfer of IgG. APMIS Suppl, 1996. 64: pp. 5–36.CrossRefGoogle ScholarPubMed
Leach, J.L., et al., Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J Immunol, 1996. 157(8): pp. 3317–22.Google ScholarPubMed
Radulescu, L., et al., Neonatal Fc receptors discriminates and monitors the pathway of native and modified immunoglobulin G in placental endothelial cells. Hum Immunol, 2004. 65(6): pp. 578–85.CrossRefGoogle ScholarPubMed
Simister, N.E., et al., An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur J Immunol, 1996. 26(7): pp. 1527–31.CrossRefGoogle ScholarPubMed
Sachs, U.J., et al., A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology, 2006. 119(1): pp. 83–9.CrossRefGoogle ScholarPubMed
Vidarsson, G., et al., FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood, 2006. 108(10): pp. 3573–9.CrossRefGoogle ScholarPubMed
Zhu, X., et al., MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol, 2001. 166(5): pp. 3266–76.CrossRefGoogle ScholarPubMed
Ober, R.J., et al., Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci USA, 2004. 101(30): pp. 11076–81.CrossRefGoogle ScholarPubMed
Ober, R.J., et al., Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol, 2004. 172(4): pp. 2021–9.CrossRefGoogle ScholarPubMed
Ward, E.S., et al., From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell, 2005. 16(4): pp. 2028–38.CrossRefGoogle ScholarPubMed
Prabhat, P., et al., Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc Natl Acad Sci USA, 2007. 104(14): pp. 5889–94.CrossRefGoogle ScholarPubMed
Sugio, S., et al., Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng, 1999. 12(6): pp. 439–46.CrossRefGoogle ScholarPubMed
Website: http://www.albumin.org.
Andersen, J.T. and Sandlie, I., A Receptor-Mediated Mechanism to Support Clinical Observation of Altered Albumin Variants. Clin Chem, 2007. 53(12): pp. 2216.CrossRefGoogle ScholarPubMed
Chuang, V.T., Kragh-Hansen, U., and Otagiri, M., Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res, 2002. 19(5): pp. 569–77.CrossRefGoogle ScholarPubMed
Chuang, V.T. and Otagiri, M., Recombinant human serum albumin. Drugs Today (Barc), 2007. 43(8): pp. 547–61.CrossRefGoogle ScholarPubMed
Kobayashi, K., Summary of recombinant human serum albumin development. Biologicals, 2006. 34(1): pp. 55–9.CrossRefGoogle ScholarPubMed
Stehle, G., et al., Plasma protein (albumin) catabolism by the tumor itself – implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol, 1997. 26(2): pp. 77–100.CrossRefGoogle ScholarPubMed
Bolling, C., et al., Phase II study of MTX-HSA in combination with cisplatin as first line treatment in patients with advanced or metastatic transitional cell carcinoma. Invest New Drugs, 2006. 24(6): pp. 521–7.CrossRefGoogle ScholarPubMed
Herman, R.A., et al., Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis patients. J Pharm Sci, 1989. 78(2): pp. 165–71.CrossRefGoogle ScholarPubMed
Kratz, F., Abu Ajaj, K., and Warnecke, A., Anticancer carrier-linked prodrugs in clinical trials. Expert Opin Investig Drugs, 2007. 16(7): pp. 1037–58.CrossRefGoogle ScholarPubMed
Vis, A.N., et al., A phase II trial of methotrexate-human serum albumin (MTX-HSA) in patients with metastatic renal cell carcinoma who progressed under immunotherapy. Cancer Chemother Pharmacol, 2002. 49(4): pp. 342–5.Google ScholarPubMed
Wunder, A., et al., Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol, 2003. 170(9): pp. 4793–801.CrossRefGoogle ScholarPubMed
Curry, S., Brick, P., and Franks, N.P., Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta, 1999. 1441(2–3): pp. 131–40.CrossRefGoogle ScholarPubMed
Brunner, G.A., et al., Pharmacokinetic and pharmacodynamic properties of long-acting insulin analogue NN304 in comparison to NPH insulin in humans. Exp Clin Endocrinol Diabetes, 2000. 108(2): pp. 100–5.CrossRefGoogle ScholarPubMed
Klein, O., et al., Albumin-bound basal insulin analogues (insulin detemir and NN344): comparable time-action profiles but less variability than insulin glargine in type 2 diabetes. Diabetes Obes Metab, 2007. 9(3): pp. 290–9.CrossRefGoogle ScholarPubMed
Kurtzhals, P., et al., Albumin binding and time action of acylated insulins in various species. J Pharm Sci, 1996. 85(3): pp. 304–8.CrossRefGoogle ScholarPubMed
Markussen, J., et al., Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia, 1996. 39(3): pp. 281–8.CrossRefGoogle ScholarPubMed
Soran, H. and Younis, N., Insulin detemir: a new basal insulin analogue. Diabetes Obes Metab, 2006. 8(1): pp. 26–30.CrossRefGoogle ScholarPubMed
Koehler, M.F., et al., Albumin affinity tags increase peptide half-life in vivo. Bioorg Med Chem Lett, 2002. 12(20): pp. 2883–6.CrossRefGoogle ScholarPubMed
Zobel, K., et al., Phosphate ester serum albumin affinity tags greatly improve peptide half-life in vivo. Bioorg Med Chem Lett, 2003. 13(9): pp. 1513–5.CrossRefGoogle ScholarPubMed
Syed, S., et al., Potent antithrombin activity and delayed clearance from the circulation characterize recombinant hirudin genetically fused to albumin. Blood, 1997. 89(9): pp. 3243–52.Google Scholar
Yeh, P., et al., Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci USA, 1992. 89(5): pp. 1904–8.CrossRefGoogle ScholarPubMed
Duttaroy, A., et al., Development of a long-acting insulin analog using albumin fusion technology. Diabetes, 2005. 54(1): pp. 251–8.CrossRefGoogle ScholarPubMed
Osborn, B.L., et al., Albutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur J Pharmacol, 2002. 456(1–3): pp. 149–58.CrossRefGoogle ScholarPubMed
Halpern, W., et al., Albugranin, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharm Res, 2002. 19(11): pp. 1720–9.CrossRefGoogle ScholarPubMed
Bain, V.G., et al., A phase 2 study to evaluate the antiviral activity, safety, and pharmacokinetics of recombinant human albumin-interferon alfa fusion protein in genotype 1 chronic hepatitis C patients. J Hepatol, 2006. 44(4): pp. 671–8.CrossRefGoogle ScholarPubMed
Balan, V., et al., Modulation of interferon-specific gene expression by albumin-interferon-alpha in interferon-alpha-experienced patients with chronic hepatitis C. Antivir Ther, 2006. 11(7): pp. 901–8.Google ScholarPubMed
Subramanian, G.M., et al., Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol, 2007. 25(12): pp. 1411–9.CrossRefGoogle ScholarPubMed
Sung, C., et al., An IFN-beta-albumin fusion protein that displays improved pharmacokinetic and pharmacodynamic properties in nonhuman primates. J Interferon Cytokine Res, 2003. 23(1): pp. 25–36.CrossRefGoogle ScholarPubMed
Glue, P., et al., Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther, 2000. 68(5): pp. 556–67.CrossRefGoogle ScholarPubMed
Kubetzko, S., et al., PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem, 2006. 281(46): pp. 35186–201.CrossRefGoogle ScholarPubMed
Lee, L.S., et al., Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconjug Chem, 1999. 10(6): pp. 973–81.CrossRefGoogle ScholarPubMed
Kitamura, K., et al., Chemical engineering of the monoclonal antibody A7 by polyethylene glycol for targeting cancer chemotherapy. Cancer Res, 1991. 51(16): pp. 4310–5.Google ScholarPubMed
Chapman, A.P., PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev, 2002. 54(4): pp. 531–45.CrossRefGoogle ScholarPubMed
Smith, B.J., et al., Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug Chem, 2001. 12(5): pp. 750–6.CrossRefGoogle ScholarPubMed
Yazaki, P.J., et al., Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein. Nucl Med Biol, 2008. 35(2): pp. 151–8.CrossRefGoogle ScholarPubMed
Muller, D. and Kontermann, R.E., Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Ther, 2007. 9(4): pp. 319–26.Google ScholarPubMed
Muller, D., et al., Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem, 2007. 282(17): pp. 12650–60.CrossRefGoogle ScholarPubMed
Iwao, Y., et al., Oxidation of Arg-410 promotes the elimination of human serum albumin. Biochim Biophys Acta, 2006. 1764(4): pp. 743–9.CrossRefGoogle ScholarPubMed
Iwao, Y., et al., Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin. Biochim Biophys Acta, 2007. 1774(12): pp. 1582–90.CrossRefGoogle ScholarPubMed
Kragh-Hansen, U., et al., Effect of genetic variation on the thermal stability of human serum albumin. Biochim Biophys Acta, 2005. 1747(1): pp. 81–8.CrossRefGoogle ScholarPubMed
Dennis, M.S., et al., Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem, 2002. 277(38): pp. 35035–43.CrossRefGoogle ScholarPubMed
Presta, L., et al., Generation of a humanized, high affinity anti-tissue factor antibody for use as a novel antithrombotic therapeutic. Thromb Haemost, 2001. 85(3): pp. 379–89.Google ScholarPubMed
Nguyen, A., et al., The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng Des Sel, 2006. 19(7): pp. 291–7.CrossRefGoogle ScholarPubMed
Wu, A.M. and Yazaki, P.J., Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med, 2000. 44(3): pp. 268–83.Google ScholarPubMed
Wu, A.M. and Senter, P.D., Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol, 2005. 23(9): pp. 1137–46.CrossRefGoogle ScholarPubMed
Kashmiri, S.V., Multivalent single-chain antibodies for radioimaging of tumors. J Nucl Med, 2001. 42(10): pp. 1528–9.Google ScholarPubMed
Borsi, L., et al., Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer, 2002. 102(1): pp. 75–85.CrossRefGoogle ScholarPubMed
Perry, C.M. and Wiseman, L.R., Trastuzumab. BioDrugs, 1999. 12(2): pp. 129–35.CrossRefGoogle ScholarPubMed
Dennis, M.S., et al., Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res, 2007. 67(1): pp. 254–61.CrossRefGoogle ScholarPubMed
Navarre, W.W. and Schneewind, O., Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev, 1999. 63(1): pp. 174–229.Google ScholarPubMed
Nygren, P.A., et al., Species-dependent binding of serum albumins to the streptococcal receptor protein G. Eur J Biochem, 1990. 193(1): pp. 143–8.CrossRefGoogle ScholarPubMed
Falkenberg, C., Bjorck, L., and Akerstrom, B., Localization of the binding site for streptococcal protein G on human serum albumin. Identification of a 5.5-kilodalton protein G binding albumin fragment. Biochemistry, 1992. 31(5): pp. 1451–7.CrossRefGoogle Scholar
Makrides, S.C., et al., Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor. J Pharmacol Exp Ther, 1996. 277(1): pp. 534–42.Google ScholarPubMed
Nygren, P.A., Flodby, P., Andersson, R., Wigzell, H., and Uhlen, M., In vivo stabilization of a human recombinant CD4 derivative by fusion to a serum albumin-binding receptor. Cold Spring Harbor Laboratory Press, New York, 1991. Vaccines 91, Modern Approaches to Vaccine Development: pp. 363–368.Google Scholar
Schlapschy, M., et al., Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel, 2007. 20(6): pp. 273–84.CrossRefGoogle ScholarPubMed
Tolmachev, V., et al., Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res, 2007. 67(6): pp. 2773–82.CrossRefGoogle ScholarPubMed
Nord, K.,et al., Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol, 1997. 15(8): pp. 772–7.CrossRefGoogle ScholarPubMed
Orlova, A., et al., Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res, 2006. 66(8): pp. 4339–48.CrossRefGoogle ScholarPubMed
Mume, E., et al., Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem, 2005. 16(6): pp. 1547–55.CrossRefGoogle ScholarPubMed
Orlova, A., et al., Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med, 2006. 47(3): pp. 512–9.Google ScholarPubMed
Tolmachev, V., et al., 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med, 2006. 47(5): pp. 846–53.Google ScholarPubMed
Stork, R., Muller, D., and Kontermann, R.E., A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel, 2007. 20(11): pp. 569–76.CrossRefGoogle ScholarPubMed
Lejon, S., et al., Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem, 2004. 279(41): pp. 42924–8.CrossRefGoogle ScholarPubMed
Linhult, M., et al., Mutational analysis of the interaction between albumin-binding domain from streptococcal protein G and human serum albumin. Protein Sci, 2002. 11(2): pp. 206–13.CrossRefGoogle ScholarPubMed
Holt, L.J., et al., Domain antibodies: proteins for therapy. Trends Biotechnol, 2003. 21(11): pp. 484–90.CrossRefGoogle ScholarPubMed
Schlehuber, S. and Skerra, A., Anticalins as an alternative to antibody technology. Expert Opin Biol Ther, 2005. 5(11): pp. 1453–62.CrossRefGoogle ScholarPubMed
Schlehuber, S. and Skerra, A., Anticalins in drug development. BioDrugs, 2005. 19(5): pp. 279–88.CrossRefGoogle ScholarPubMed
Nilsson, F.Y. and Tolmachev, V., Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel, 2007. 10(2): pp. 167–75.Google ScholarPubMed
Tolmachev, V., et al., Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther, 2007. 7(4): pp. 555–68.CrossRefGoogle ScholarPubMed
Stumpp, M.T. and Amstutz, P., DARPins: a true alternative to antibodies. Curr Opin Drug Discov Devel, 2007. 10(2): pp. 153–9.Google ScholarPubMed
Revets, H., Baetselier, P., and Muyldermans, S., Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther, 2005. 5(1): pp. 111–24.CrossRefGoogle ScholarPubMed
Binz, H.K., Amstutz, P., and Plückthun, A., Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol, 2005. 23(10): pp. 1257–68.CrossRefGoogle ScholarPubMed
Kim, J., et al., Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol, 2007. 122(2): pp. 146–55.CrossRefGoogle ScholarPubMed
Ober, R.J., et al., Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol, 2001. 13(12): pp. 1551–9.CrossRefGoogle ScholarPubMed
Peters, T.., Serum albumin. Adv Protein Chem, 1985. 37: pp. 161–245.CrossRefGoogle ScholarPubMed
Stevens, D.K., Eyre, R.J., and Bull, R.J., Adduction of hemoglobin and albumin in vivo by metabolites of trichloroethylene, trichloroacetate, and dichloroacetate in rats and mice. Fundam Appl Toxicol, 1992. 19(3): pp. 336–42.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×