Skip to main content Accessibility help
Hostname: page-component-6b989bf9dc-wj8jn Total loading time: 0 Render date: 2024-04-15T03:22:12.707Z Has data issue: false hasContentIssue false

42 - REM sleep and emotion regulation

from Section VI - Disturbance in the REM sleep-generating mechanism

Published online by Cambridge University Press:  07 September 2011

Martin Desseilles
University of Geneva
Virginie Sterpenich
University of Geneva
Thien Thanh Dang-Vu
Harvard Medical School
Sophie Schwartz
University of Geneva
Birendra N. Mallick
Jawaharlal Nehru University
S. R. Pandi-Perumal
Somnogen Canada Inc, Toronto
Robert W. McCarley
Harvard University, Massachusetts
Adrian R. Morrison
University of Pennsylvania
Get access



Despite substantial research focusing on the interaction between sleep and cognition, especially memory, the impact of sleep and sleep loss on affective and emotional regulation has comparatively attracted much less attention. This might be surprising considering that nearly all psychiatric and neurological disorders with impaired mood express co-occurring abnormalities of sleep, and that many sleep disorders are accompanied by mood disturbances, thus suggesting an intimate relationship between sleep and emotion. Yet, recent studies evaluating subjective as well as objective measures of mood and affect, combined with insights from clinical observations and neuroimaging research, offer new evidence for the emerging role of sleep in regulating emotional brain function. In this chapter, we review clinical and neuroimaging data that support the existence of such complex interactions between sleep and emotion regulation. We report that (1) sleep disorders are frequently associated with affective symptoms; (2) patients with mood disorders often present with sleep disturbances; (3) sleep deprivation may transitorily alleviate depressive symptoms; (4) dream experiences may be highly emotional; (5) brain regions involved in emotion processing and regulation, such as the limbic (e.g., amygdala, anterior cingulate cortex) and ventromedial prefrontal regions, are strongly activated during REM sleep; (6) subjective mood assessments exhibit a circadian modulation. New data also show that some hypothalamic neuropeptides (hypocretin/orexin) play a dual role in the stabilization of sleep–wake states and on mesolimbic dopamine activity, with significant effects on neural plasticity related to emotional learning, reward processing, and addiction. Together, these seemingly disparate observations converge to indicate a physiological interplay between sleep–wake and emotional brain functions serving the modulation, the preparation, and the optimization of waking behavior.

Rapid Eye Movement Sleep
Regulation and Function
, pp. 427 - 436
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Archer, S. N., Robilliard, D. L., Skene, D. J. . (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26(4): –15.CrossRefGoogle ScholarPubMed
Artioli, P., Lorenzi, C., Pirovano, A. . (2007) How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol 17(9): –94.CrossRefGoogle ScholarPubMed
Baumann, C. R. & Bassetti, C. L. (2005) Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol 4(10): –82.CrossRefGoogle ScholarPubMed
Benca, R. M., Obermeyer, W. H., Thisted, R. A. & Gillin, J. C. (1992) Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry 49(8): 651–68; discussion –70.CrossRefGoogle ScholarPubMed
Benca, R. M. & Peterson, M. J. (2008) Insomnia and depression. Sleep Med 9 Suppl 1: –9.Google ScholarPubMed
Benedetti, F., Dallaspezia, S., Colombo, C. . (2008) A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci Lett 445(2): –7.CrossRefGoogle ScholarPubMed
Birchler-Pedross, A., Schroder, C. M., Munch, M. . (2009) Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J Biol Rhythms 24(3): –42.CrossRefGoogle ScholarPubMed
Boivin, D. B., Czeisler, C. A., Dijk, D. J. . (1997) Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch Gen Psychiatry 54(2): –52.CrossRefGoogle ScholarPubMed
Caldwell, B. A. & Redeker, N. (2005) Sleep and trauma: an overview. Issues Ment Health Nurs 26(7): –38.CrossRefGoogle ScholarPubMed
Cartwright, R., Baehr, E., Kirkby, J., Pandi-Perumal, S. R. & Kabat, J. (2003) REM sleep reduction, mood regulation and remission in untreated depression. Psychiatry Res 121(2): –67.CrossRefGoogle ScholarPubMed
Chabas, D., Habert, M. O., Maksud, P. . (2007) Functional imaging of cataplexy during status cataplecticus. Sleep 30(2): –6.CrossRefGoogle ScholarPubMed
Dang-Vu, T. T., Desseilles, M., Schwartz, S. & Maquet, P. (2009) Neuroimaging of narcolepsy. CNS Neurol Disord Drug Targets 8(4): –63.CrossRefGoogle ScholarPubMed
Davidson, R. J. (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51(1): –80.CrossRefGoogle ScholarPubMed
Desseilles, M., Balteau, E., Sterpenich, V. . (2009) Abnormal neural filtering of irrelevant visual information in depression. J Neurosci 29(5): –403.CrossRefGoogle ScholarPubMed
Desseilles, M., Dang-Vu, T., Schabus, M. . (2008) Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 31(6): –94.CrossRefGoogle ScholarPubMed
Dinges, D. F., Pack, F., Williams, K. . (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20(4): –77.Google ScholarPubMed
Fosse, M. J., Fosse, R., Hobson, J. A. & Stickgold, R. J. (2003) Dreaming and episodic memory: a functional dissociation?J Cogn Neurosci 15(1): –9.CrossRefGoogle ScholarPubMed
Friedman, S., Smith, L. & Fogel, A. (1999) Suicidality in panic disorder: a comparison with schizophrenic, depressed, and other anxiety disorder outpatients. J Anxiety Disord 13(5): –61.CrossRefGoogle ScholarPubMed
Frith, U. & Frith, C. D. (2003) Development and neurophysiology of mentalizing. Philos Trans R Soc Lond B Biol Sci 358(1431): –73.CrossRefGoogle ScholarPubMed
Germain, A., Buysse, D. J. & Nofzinger, E. (2008) Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep Med Rev 12(3): –95.CrossRefGoogle ScholarPubMed
Germain, A. & Kupfer, D. J. (2008) Circadian rhythm disturbances in depression. Hum Psychopharmacol 23(7): –85.CrossRefGoogle ScholarPubMed
Giles, D. E., Roffwarg, H. P. & Rush, A. J. (1990) A cross-sectional study of the effects of depression on REM latency. Biol Psychiatry 28(8): –704.CrossRefGoogle ScholarPubMed
Goodwin, R. D. & Marusic, A. (2008) Association between short sleep and suicidal ideation and suicide attempt among adults in the general population. Sleep 31(8): –101.Google ScholarPubMed
Harris, G. C. & Aston-Jones, G. (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29(10): –7.CrossRefGoogle ScholarPubMed
Harrison, Y. & Horne, J. A. (2000) The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl 6(3): –49.CrossRefGoogle ScholarPubMed
Hong, S. B., Tae, W. S. & Joo, E. Y. (2006) Cerebral perfusion changes during cataplexy in narcolepsy patients. Neurology 66(11): –9.CrossRefGoogle ScholarPubMed
Horne, J. A. (1993) Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. Br J Psychiatry 162: –19.CrossRefGoogle ScholarPubMed
Hu, P., Stylos-Allan, M. & Walker, M. P. (2006) Sleep facilitates consolidation of emotional declarative memory. Psychol Sci 17(10): –8.CrossRefGoogle ScholarPubMed
Johnstone, T., Van Reekum, C. M., Urry, H. L., Kalin, N. H. & Davidson, R. J. (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27(33): –84.CrossRefGoogle ScholarPubMed
Levin, R. & Nielsen, T. A. (2007) Disturbed dreaming, posttraumatic stress disorder, and affect distress: a review and neurocognitive model. Psychol Bull 133(3): –528.CrossRefGoogle ScholarPubMed
Lewy, A. J., Lefler, B. J., Emens, J. S. & Bauer, V. K. (2006) The circadian basis of winter depression. Proc Natl Acad Sci USA 103(19): –19.CrossRefGoogle ScholarPubMed
Maquet, P. & Franck, G. (1997) REM sleep and amygdala. Mol Psychiatry 2(3): –6.CrossRefGoogle Scholar
Maquet, P., Peters, J., Aerts, J. . (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596): –6.CrossRefGoogle ScholarPubMed
McKenna, B. S., Dicjinson, D. L., Orff, H. J. & Drummond, S. P. (2007) The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions. J Sleep Res 16(3): –52.CrossRefGoogle ScholarPubMed
McNamara, P. (1996) REM sleep: a social bonding mechanism. New Ideas Psychol 4(1): –46.Google Scholar
Mellman, T. A., Bustamante, V., Fins, A. I., Pigeon, W. R. & Nolan, B. (2002) REM sleep and the early development of posttraumatic stress disorder. Am J Psychiatry 159(10): –701.CrossRefGoogle ScholarPubMed
Mignot, E. (2001) A commentary on the neurobiology of the hypocretin/orexin system. Neuropsychopharmacology 25(5 Suppl): –13.CrossRefGoogle ScholarPubMed
Monti, J. M. & Monti, D. (2005) Sleep disturbance in schizophrenia. Int Rev Psychiatry 17(4): –53.CrossRefGoogle Scholar
Nielsen, T. & Levin, R. (2007) Nightmares: a new neurocognitive model. Sleep Med Rev 11(4): –310.CrossRefGoogle ScholarPubMed
Nishida, M., Pearsall, J., Buckner, R. L. & Walker, M. P. (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19(5): –66.CrossRefGoogle ScholarPubMed
Nofzinger, E. A., Mintun, M. A., Wiseman, M., Kupfer, D. J. & Moore, R. Y. (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770(1/2): –201.Google Scholar
Pakyurek, M., Gutkovich, Z. & Weintraub, S. (2002) Reduced aggression in two inpatient children with the treatment of their sleep disorder. J Am Acad Child Adolesc Psychiatry 41(9): .CrossRefGoogle ScholarPubMed
Ponz, A., Khatami, R., Poryazova, R. . (2010a) Abnormal activity in reward brain circuits in human narcolepsy with cataplexy. Ann Neurol, 67(2), –200.CrossRefGoogle ScholarPubMed
Ponz, A., Khatami, R., Poryazova, R. . (2010b) Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann Neurol 67(3), –8.Google ScholarPubMed
Reynolds, C. F., 3rd & Kupfer, D. J. (1987) Sleep research in affective illness: state of the art circa 1987. Sleep 10(3): –215.CrossRefGoogle ScholarPubMed
Salomon, R. M., Ripley, B., Kennedy, J. S. . (2003) Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol Psychiatry 54(2): –104.CrossRefGoogle ScholarPubMed
Scarone, S., Manzone, M. L., Gambini, O. . (2008) The dream as a model for psychosis: an experimental approach using bizarreness as a cognitive marker. Schizophr Bull 34(3): –22.Google ScholarPubMed
Schwartz, S. (2003) Are life episodes replayed during dreaming?Trends Cogn Sci 7(8): –7.CrossRefGoogle ScholarPubMed
Schwartz, S. & Maquet, P. (2002) Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn Sci 6(1): –30.CrossRefGoogle ScholarPubMed
Schwartz, S., Ponz, A., Poryazova, R. . (2008) Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain 131(Pt 2): –22.CrossRefGoogle ScholarPubMed
Selvi, Y., Gulec, M.Agargun, M. Y. & Besiroglu, L. (2007) Mood changes after sleep deprivation in morningness-eveningness chronotypes in healthy individuals. J Sleep Res 16(3): –4.CrossRefGoogle ScholarPubMed
Sterpenich, V., Albouy, G., Boly, M. . (2007) Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol 5(11): .CrossRefGoogle ScholarPubMed
Sterpenich, V., Albouy, G., Darsaud, A. . (2009) Sleep promotes the neural reorganization of remote emotional memory. J Neurosci 29(16): –52.CrossRefGoogle ScholarPubMed
Valli, K. & Revonsuo, A. (2009) The threat simulation theory in light of recent empirical evidence: a review. Am J Psychol 122(1): –38.Google ScholarPubMed
Van Dongen, H. P., Baynard, M. D., Maislin, G. & Dinges, D. F. (2004) Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep 27(3): –33.Google ScholarPubMed
Vandewalle, G., Archer, S. N., Wuillaume, C. . (2009) Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype. J Neurosci 29(25): –56.CrossRefGoogle ScholarPubMed
Velazquez-Moctezuma, J., Monroy, E. & Cruz, M. L. (1989) Facilitation of the effect testosterone on male sexual behavior in rats deprived of REM sleep. Behav Neural Biol 51(1): –53.CrossRefGoogle ScholarPubMed
Venkatraman, V., Chuah, Y. M., Huettel, S. A. & Chee, M. W. (2007) Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep 30(5): –9.CrossRefGoogle ScholarPubMed
Viola, A. U., Archer, S. N., James, L. M. . (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17(7): –18.CrossRefGoogle ScholarPubMed
Vogel, G. W., Buffenstein, A., Minter, K. & Hennessey, A. (1990) Drug effects on REM sleep and on endogenous depression. Neurosci Biobehav Rev 14(1): –63.Google ScholarPubMed
Wagner, U., Gais, S. & Born, J. (2001) Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem 8(2): –19.CrossRefGoogle ScholarPubMed
Wagner, U., Fischer, S. & Born, J. (2002) Changes in emotional responses to aversive pictures across periods rich in slow-wave sleep versus rapid eye movement sleep. Psychosom Med 64(4): –34.Google Scholar
Wagner, U., Degirmenci, M., Drosopoulos, S., Perras, B. & Born, J. (2005) Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory. Biol Psychiatry 58(11): –93.CrossRefGoogle ScholarPubMed
Wagner, U., Hallschmid, M., Rasch, B. & Born, J. (2006) Brief sleep after learning keeps emotional memories alive for years. Biol Psychiatry 60(7): –90.CrossRefGoogle ScholarPubMed
Waters, W. F., Adams, S. G. Jr., Binks, P. & Varnado, P. (1993) Attention, stress and negative emotion in persistent sleep-onset and sleep-maintenance insomnia. Sleep 16(2): –36.CrossRefGoogle ScholarPubMed
Wirz-Justice, A. (2008). Diurnal variation of depressive symptoms. Dialogues Clin Neurosci 10(3): –43.Google ScholarPubMed
Wu, J. C., Kelsoe, J. R., Schachat, C. . (2009) Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol Psychiatry 66(3): –301.CrossRefGoogle ScholarPubMed
Yoo, S. S., Gujar, N., Hu, P., Jolesz, F. A. & Walker, M. P. (2007) The human emotional brain without sleep – a prefrontal amygdala disconnect. Curr Biol 17(20): –8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats