Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T04:37:55.140Z Has data issue: false hasContentIssue false

10 - Shortwave Radiative Transfer in the Atmosphere and Ocean

Published online by Cambridge University Press:  13 July 2017

Knut Stamnes
Affiliation:
Stevens Institute of Technology, New Jersey
Gary E. Thomas
Affiliation:
University of Colorado Boulder
Jakob J. Stamnes
Affiliation:
Universitetet i Bergen, Norway
Get access

Summary

Introduction

Two problems in atmospheric and environmental science have received much attention: the occurrence of widespread ozone depletion and global warming. Ozone depletion has been related directly to the release of man-made trace gases, notably chlorofluorocarbons used in the refrigeration industry and as “propellants” in spray cans. Since ozone provides an effective shield against damaging ultraviolet radiation from the Sun, there is indeed good reason to be concerned, because a thinning of the ozone layer has serious biological ramifications. The most harmful ultraviolet (UV) radiation reaching the Earth's surface, commonly referred as UV-B radiation, lies in the wavelength range between 280 and 320 nm (see Table 1.1). UV-B radiation, which has enough energy to damage the DNA molecule, is strongly absorbed by ozone. Radiation with wavelengths between 320 and 400 nm, referred to as UVA radiation, is relatively little affected by ozone. UV-A radiation can mitigate some of the damage inflicted by UV-B radiation (a phenomenon known as photo-repair), but it causes sunburn and is therefore believed to be a partial cause of skin cancer. In addition to the harmful effects on humans, too much UV radiation has deleterious effects on terrestrial animals and plants, as well as aquatic life forms.

Ozone is a trace gas, whose bulk content resides in the stratosphere. Its abundance is determined by a balance between production and loss processes. Chemical reactions as well as photolysis are responsible for the destruction of atmospheric ozone. Its formation in the stratosphere relies on the availability of atomic oxygen, which is produced by photodissociation of molecular oxygen. Ozone is then formed when an oxygen atom (O) and an oxygen molecule (O2) combine to yield O3. It is produced mainly high in the atmosphere at low latitudes where light is abundant, and subsequently transported to higher latitudes by the equator-to-pole circulation (Brasseur and Solomon, 2006). Thus, the distribution of ozone in the atmosphere, vertically and globally, is a result of a subtle interplay between radiation, chemistry, and dynamics.

Ozone absorbs ultraviolet/visible radiation as well as thermal infrared (terrestrial) radiation in the 9.6 μm band. A thinning of the ozone layer renders the stratosphere more transparent in the 9.6 μm region, thereby allowing more transmission, and less surface backwarming.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×