Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-x64cq Total loading time: 0.917 Render date: 2022-05-27T16:49:10.599Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Book contents

13 - Sandy coasts

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

The South African coastline is variable in geomorphic character, but at least two thirds of the coastline is dominated by sandy and part-lithified sandy intertidal shorelines. Part-lithified sandy intertidal shorelines consist of a mosaic of rocky outcrops on dominantly sandy beaches. The rocks on these mixed shores are generally composed of cemented Quaternary deposits. Carbonate cemented Quaternary aeolianite/beachrock complexes are relatively common along the South African coastline and on the continental shelf, where they form prominent reefs. The Quaternary deposits along the coastline are characterised mainly by transgressive dune cordons. These systems record sensitive palaeoenvironmental fluctuations, as archived in their structure, diagenetic history, and relationship to past sea-levels and ancient shorelines.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 203 - 218
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, S. J., Botha, G. A., Duller, G. A. T., Wintle, A. G., Rebêlo, L. P. and Momade, F. J. (2006). The formation and evolution of the barrier islands of Inhaca and Bazaruto, Mozambique. Geomorphology, 82, 295308.CrossRefGoogle Scholar
Bateman, M. D., Carr, A. S., Dunajko, A. C., Holmes, P. J., Roberts, D. L., McLaren, S. J., Bryant, R. G., Marker, M. E. and Murray-Wallace, C. V. (2011). The evolution of coastal barrier systems: A case study of the Middle-Late Pleistocene Wilderness barriers, South Africa. Quaternary Science Reviews, 30, 6381.CrossRefGoogle Scholar
Bateman, M. D., Holmes, P. J., Carr, A. S., Horton, B. P. and Jaiswal, M. K. (2004). Aeolianite and barrier dune construction spanning the last two glacial-interglacial cycles from the southern Cape coast, South Africa. Quaternary Science Reviews, 23, 16811698.CrossRefGoogle Scholar
Bathurst, R. G. C. (1975). Carbonate Sediments and their Diagenesis, 2nd Ed. Developments in Sedimentology, 12. New York: Elsevier, 660pp.Google Scholar
Botha, G. A. and Porat, N. (2007). Soil chronosequence development in dunes on the southeast African coastal plain, Maputaland, South Africa. Quaternary International, 162–163, 111132.CrossRefGoogle Scholar
Bosman, C. (2012). The marine geology of the Aliwal Shoal, Scottburgh, South Africa. Unpublished PhD thesis, University of KwaZulu-Natal, South Africa, 581pp.
Carr, A. S., Bateman, M. D., Roberts, D. L., Murray-Wallace, C. V., Jacobs, Z. and Holmes, P. J. (2010). The last interglacial sea-level high stand on the southern Cape coastline of South Africa. Quaternary Research, 73, 351363.CrossRefGoogle Scholar
Carr, A. S., Thomas, D. S. G. and Bateman, M. D. (2006). Climatic and sea level controls on Late Quaternary eolian activity on the Agulhas Plain, South Africa. Quaternary Research, 65, 252263.CrossRefGoogle Scholar
Cawthra, H. C., Bateman, M. D., Carr, A. S., Compton, J. S. and Holmes, P. J. (2014). Understanding Late Quaternary change at the land–ocean interface: A synthesis of the evolution of the Wilderness coastline, South Africa. Quaternary Science Reviews, 99, 210223.CrossRefGoogle Scholar
Cawthra, H. C. and Uken, R. (2012). Modern beachrock formation in Durban, KwaZulu-Natal. South African Journal of Science, 108, Art. #935, 5pp, doi:/10.4102/sajs.v108i7/8.935.CrossRefGoogle Scholar
Cawthra, H. C., Uken, R. and Ovechkina, M. N. (2012). New insights into the geological evolution of the Durban Bluff and adjacent Blood Reef, South Africa. South African Journal of Geology, 115, 291308.CrossRefGoogle Scholar
Compton, J. S. (2001). Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langabaan Lagoon salt marsh, South Africa. The Holocene, 11, 395405.CrossRefGoogle Scholar
Compton, J. S. and Franceschini, G. (2005). Holocene geoarchaeology of the Sixteen Mile Beach barrier dunes in the Western Cape, South Africa. Quaternary Research, 63, 99107.CrossRefGoogle Scholar
Cooper, J. A. G. (2001). Geomorphological variability among microtidal estuaries from the wave-dominated South African coast. Geomorphology, 40, 99122.CrossRefGoogle Scholar
Cooper, J. A. G. and Flores, R. M. (1991). Shoreline deposits and diagenesis resulting from two Late Pleistocene highstands near +5 and +6 metres, Durban, South Africa. Marine Geology, 97, 325343.CrossRefGoogle Scholar
Cooper, M. R. and Kensley, B. F. (1991). An early Pleistocene decapod crustacean fauna from ZululandSouth African Journal of Science87, 601604.Google Scholar
Davies, J. L. (1980). Geographical Variation in Coastal Development. New York: Longman, 212pp.Google Scholar
de Decker, R. H. (1988). The wave regime on the inner shelf south of the Orange River and its implications for sediment transport. South African Journal of Geology, 91, 358372.Google Scholar
Dingle, R. V., Birch, G. F., Bremner, J. M., de Decker, R. H., Du Plessis, A., Engelbrecht, J. C., Fincham, M. J., Fitton, B. W., Flemming, B. W., Gentle, R. I., Goodland, S. W., Martin, A. K., Mills, E. G., Moir, G. J., Parker, R. J., Robson, S. H., Rogers, J., Salmon, D. A., Siesser, W. G., Simpson, S. W., Summerhayes, C. P., Westall, F., Winter, A. and Woodborne, M. W. (1987). Deep-sea sedimentary environments around southern Africa (South-East Atlantic and South-West Indian Oceans). Annals of the South African Museum, 98, 127.Google Scholar
Dunajko, A. C. and Bateman, M. D. (2010). Sediment provenance of the Wilderness barrier dunes, southern Cape coast, South Africa. Terra Nova, 22, 417423.CrossRefGoogle Scholar
Elias, S. A. (2007). Sea level studies. In Encyclopedia of Quaternary Science, ed. Elias, S. A.. Amsterdam: Elsevier, pp. 29673095.Google Scholar
Fisher, E. C., Bar-Matthews, M., Jerardino, A. and Marean, C. W. (2010). Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quaternary Science Reviews, 29, 13821398.CrossRefGoogle Scholar
Flemming, B. W. (1981). Factors controlling shelf sediment dispersal along the southeast African continental margin. Marine Geology, 42, 259277.CrossRefGoogle Scholar
Flügel, E. (2004). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin: Springer-Verlag, 984pp.CrossRefGoogle Scholar
Green, A. N., Cooper, J. A. G., Leuci, R. and Thackeray, Z. (2013). Formation and preservation of an overstepped segmented lagoon complex on a high-energy continental shelf. Sedimentology, 60, 17551768.CrossRefGoogle Scholar
Gresse, P. G. (1988). Washover boulder fans and reworked phosphorite in the Alexander Bay FormationSouth African Journal of Geology91, 391398.Google Scholar
Guilcher, A. (1988). Coral Reef Geomorphology. New York: John Wiley & Sons, 228pp.Google Scholar
Harris, L., Nel, R. and Schoeman, D. (2011). Mapping beach morphodynamics remotely: A novel application tested on South African sandy shores. Estuarine Coastal and Shelf Science, 92, 7889.CrossRefGoogle Scholar
Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. and McCulloch, M. (2007). Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quaternary Science Reviews, 26, 20902112.CrossRefGoogle Scholar
Henshilwood, C. S., D’Errico, F., Yates, R., Jacobs, Z., Tribolo, C., Duller, G. A. T., Mercier, N., Sealy, J. C., Valladas, H., Watts, I. and Wintle, A. G. (2002). Emergence of modern human behavior: Middle Stone Age engravings from South Africa. Science, 295, 12781280.CrossRefGoogle ScholarPubMed
Heydorn, A. E. F. and Tinley, K. L. (1980). Estuaries of the Cape Part 1: Synopsis of the Cape Coast, Natural Features, Dynamics and Utilisation. Pretoria: CSIR Research Report, 380, 96pp.Google Scholar
Illenberger, W. K. (1996). The geomorphic evolution of the Wilderness dune cordons, South Africa. Quaternary International, 33, 1120.CrossRefGoogle Scholar
Illenberger, W. K. and Burkinshaw, J. R. (2008). Coastal dunes and dunefields. In Geomorphology of the Eastern Cape, ed. Lewis, C. A.. Grahamstown: NICS, pp. 85106.Google Scholar
Illenberger, W. K. and Verhagen, B. T. (1990). Environmental history and dating of coastal dune fields. South African Journal of Science, 86, 311314.Google Scholar
Jackson, D. W. T., Cooper, J. A. G. and Green, A. N. (2014). A preliminary classification of coastal sand dunes of KwaZulu-Natal. Journal of Coastal Research, Special Issue, 70, 718722.CrossRefGoogle Scholar
Jacobs, Z. and Roberts, D. L. (2009). Last Interglacial age for the Nahoon Fossil Human Footprints, Southeast Coast of South Africa. Quaternary Geochronology, 4, 160169.CrossRefGoogle Scholar
Jacobs, Z., Roberts, R. G., Lachlan, T. J., Karkanas, P., Marean, C. W. and Roberts, D. L. (2011). Development of the SAR TT-OSL procedure for dating Middle Pleistocene dune and shallow marine deposits along the southern Cape coast of South Africa. Quaternary Geochronology, 6, 491513.Google Scholar
Kelletat, D. (2006). Beachrock as sea-level indicator? Remarks from a geomorphological point of view. Journal of Coastal Research, 22, 15581564.CrossRefGoogle Scholar
Kruger, A. C. (2004). Climate of South Africa: Climate Regions. WS 45. Pretoria: South African Weather Service, 19pp.Google Scholar
Laborel, J., Morhange, C., Lafont, R., Le Campion, J., Laborel-Deguen, F. and Sartoretto, S. (1994). Biological evidence of sea-level rise during the last 4500 years on the rocky coasts of continental southwestern France and Corsica. Marine Geology, 120, 203223.CrossRefGoogle Scholar
Lambeck, K., Woodroffe, C. D., Antonioli, F., Anzidei, M., Gehrels, W. R., Laborel, J. and Wright, A. J. (2010). Palaeoenvironmental records, geophysical modelling and reconstruction of sea-level trends and variability on centennial and longer time scales. In Understanding Sea-Level Rise and Variability, ed. Church, J. A., Woodworth, P. L., Aarup, T. and Wilson, W. S.. Oxford: Wiley-Blackwell, pp. 61121.CrossRefGoogle Scholar
Malan, J. A. (1987). The Bredasdorp Group in the area between Gans Bay and Mossel Bay. South African Journal of Science, 83, 506507.Google Scholar
Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P. J., Thompson, E., Watts, I. and Williams, H. M. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905908.CrossRefGoogle ScholarPubMed
Marker, M. E. and Holmes, P. J. (2010). The geomorphology of the Coastal Platform in the southern Cape. South African Geographical Journal, 92, 105116.CrossRefGoogle Scholar
Martin, A. K. and Flemming, B. W. (1987). Aeolianites of the South African coastal zone and continental shelf as sea-level indicators. South African Journal of Science, 83, 507508.Google Scholar
McLachlan, A., Siebe, P. R. and Ascaray, C. (1982). Survey of a Major Coastal Dunefield in the Eastern Cape. University of Port Elizabeth Zoology Report Series, no. 10. Port Elizabeth: University of Port Elizabeth, 48pp.Google Scholar
Meadows, M. E., Rogers, J., Lee-Thorp, J. A., Bateman, M. D. and Dingle, R. V. (2002). Holocene geochronology of a continental-shelf mudbelt off southwestern Africa. The Holocene, 12, 5967.CrossRefGoogle Scholar
Miller, W. R. and Mason, T. R. (1994). Erosional features of coastal beachrock and aeolianite outcrops in Natal and Zululand, South Africa. Journal of Coastal Research, 10, 374394.Google Scholar
Milliman, J. D. (1974). Marine Carbonates: Recent Sedimentary Carbonates Part 1. New York, Heidelberg and Berlin: Springer-Verlag, 375pp.CrossRefGoogle Scholar
Musekiwa, C., Cawthra, H. C., Unterner, M. and van Zyl, F. W. (2015). An assessment of coastal vulnerability for the South African coast. South African Journal of Geomatics, 4, 123137.Google Scholar
Neumeier, U. (1999). Experimental modelling of beachrock cementation under microbial influence. Sedimentary Geology, 126, 3546.CrossRefGoogle Scholar
Partridge, T. C. and Maud, R. R. (2000). The Cenozoic of Southern Africa. Oxford: Oxford University Press, 406pp.Google Scholar
Pether, J., Roberts, D. L. and Ward, J. (2000). Deposits of the West Coast. In The Cenozoic of Southern Africa, ed. Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 3354.Google Scholar
Porat, N. and Botha, G. (2008). The luminescence chronology of dune development on the Maputaland coastal plain, southeast Africa. Quaternary Science Reviews, 27, 10241046.CrossRefGoogle Scholar
Ramsay, P. J. (1996). Quaternary Marine Geology of the Sodwana Bay Continental Shelf, Northern KwaZulu-Natal. Pretoria: Council for Geoscience Bulletin, 117, 86pp.Google Scholar
Ramsay, P. J. and Cooper, J. A. G. (2002). Late Quaternary sea-level change in South Africa. Quaternary Research, 57, 8290.CrossRefGoogle Scholar
Roberts, D. L., Bateman, M. D., Murray-Wallace, C. V., Carr, A. S. and Holmes, P. J. (2008). Fossil elephant trackways, sedimentation and diagenesis in OSL/AAR-dated Late Quaternary coastal aeolianites: Still Bay, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 261279.CrossRefGoogle Scholar
Roberts, D. L., Bateman, M. D., Murray-Wallace, C. V., Carr, A. S. and Holmes, P. J. (2009). West coast dune plumes: Climate driven contrasts in dunefield morphogenesis along the western and southern South African coasts. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 2438.CrossRefGoogle Scholar
Roberts, D. L., Botha, G. A., Maud, R. R. and Pether, J. (2006). Coastal Cenozoic deposits. In The Geology of South Africa, ed. Johnson, M. R., Anhausser, C. R. and Thomas, R. J.. Pretoria: Geological Society of South Africa/Council for Geoscience, pp. 605628.Google Scholar
Roberts, D. L., Cawthra, H. C. and Musekiwa, C. (2014). Dynamics of late Cenozoic aeolian deposition along the South African coast: A record of evolving climate and ecosystems. In Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences, ed. Martini, I. P. and Wanless, H. R.. London: Geological Society of London Special Publication 388, pp. 353387.Google Scholar
Roberts, D. L., Karkanas, P., Jacobs, Z., Marean, C. W. and Roberts, R. G. (2012). Melting ice sheets 400,000 yr ago raised sea level by 13 m: Past analogue for future trends. Earth and Planetary Science Letters, 357–358, 226237.CrossRefGoogle Scholar
Roberts, D. L., Matthews, T., Herries, A. I. R., Boulter, C., Scott, L., Dondo, C., Mthembi, P., Browning, C., Smith, R. M. H., Haarhoff, P. and Bateman, M. D. (2011). Regional and global context of the Late Cenozoic Langebaanweg (LBW) palaeontological site: West Coast of South Africa. Earth-Science Reviews, 106, 191214.CrossRefGoogle Scholar
Salzmann, L., Green, A. and Cooper, J. A. G. (2013). Submerged barrier shoreline sequences on a high energy, steep and narrow shelf. Marine Geology, 346, 366374.CrossRefGoogle Scholar
Schoonees, J. S. (2000). Annual variation in the net longshore sediment transport rate. Coastal Engineering, 40, 141160.CrossRefGoogle Scholar
Smith, A. M., Mather, A. A., Bundy, S. C., Cooper, J. A. G., Guastella, L. A., Ramsay, P. J. and Theron, A. (2010). Contrasting styles of swell-driven coastal erosion: Examples from KwaZulu-Natal, South Africa. Geological Magazine, 147, 940953.Google Scholar
Tinley, K. L. (1985). Coastal dunes of South Africa; South African National Scientific Programmes report 109. Pretoria: CSIR, 300pp.Google Scholar
Vousdoukas, M. I., Velegrakis, A. F. and Karambas, T. V. (2009). Morphology and sedimentology of a microtidal beach with beachrocks: Vatera, Lesbos, NE Mediterranean. Continental Shelf Research, 29, 19371947.CrossRefGoogle Scholar
Vousdoukas, M. I., Velegrakis, A. F. and Plomaritis, T. A. (2007). Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Science Reviews, 85, 2346.CrossRefGoogle Scholar
Vött, A., Bareth, G., Brückner, H., Curdt, C., Fountoulis, I., Grapmayer, R., Hadlerm, H., Hoffmeister, D., Klasen, N., Lang, F., Masberg, P., May, S. M., Ntageretzis, K., Sakellariou, D. and Willershäuser, T. (2010). Beachrock-type calcarenitic tsunamites along the shores of the eastern Ionian Sea (western Greece) case studies from Akarnania, the Ionian Islands and the western Peloponnese. Zeitschrift für Geomorphologie, Supplementband, 54, 150.CrossRefGoogle Scholar
Whitfield, A. K. (1983). Effect of prolonged aquatic macrophyte senescence on the biology of the dominant fish species at Swartvlei. South African Journal of Science, 79, 153157.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×