Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-27T05:04:26.770Z Has data issue: false hasContentIssue false

10 - Desert dune environments

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

The distribution and diverse nature of dunes in southern African drylands makes them a complex and enigmatic landscape component. While dunes are dominant landscape features in large areas of the Kalahari and Namib deserts, localised and topographically constrained dunes elsewhere are also an important part of the continental dune record. Over 600 published luminescence ages from dune sediments through the subcontinent should, in theory, make possible chronometrically robust analyses of the Quaternary palaeoclimate record. Compared to early aridity- and morphology-focussed interpretations of the dune record, in which three or four phases of dune development were proposed with a focus on the period of the Last Glacial Maximum, today’s data demonstrate a complex and regionally variable record of dune development, with almost continuous dune accumulation through the last 30 kyr preserved in the southwest Kalahari and a more sporadic record in presently wetter eastern and northern areas. Dune geomorphological proxies require careful evaluation before Quaternary climate inferences can be usefully made.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 153 - 169
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreotti, B., Fourrière, A., Ould-Kaddour, F., Murray, B. and Claudin, P. (2009). Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature, 457, 11201123.CrossRefGoogle ScholarPubMed
Bailey, R. M. and Thomas, D. S. G. (2014). A quantitative approach to understanding dated dune stratigraphies. Earth Surface Processes and Landforms, 39, 614631.CrossRefGoogle Scholar
Besler, H. (1980). Die Dünen-Namib: Entstehung und Dynamik eines Ergs. Stuttgarter Universität Institut für Geographie, 96, 241pp.Google Scholar
Bristow, C. S., Duller, G. A. T. and Lancaster, N. (2007). Age and dynamics of linear dunes in the Namib Desert. Geology, 35, 555558.CrossRefGoogle Scholar
Brook, G. A., Marais, E., Srivastava, P. and Jordan, T. (2007). Timing of lake-level changes in Etosha Pan, Namibia, since the middle Holocene from OSL ages of relict shorelines in the Okondeka region. Quaternary International, 175, 2940.CrossRefGoogle Scholar
Bubenzer, O., Bödeker, O. and Besler, H. (2007). A transcontinental comparison between the southern Namib Erg (Namibia) and the southern Great Sand Sea (Egypt). Zentralblatt für Geologie und Paläontologie, Teil 1 Heft, 1/4, 723.Google Scholar
Buch, M. W., Rose, D. and Zöller, L. (1992). A TL-calibrated pedostratigraphy of the western lunette dunes of Etosha Pan/northern Namibia: Palaeoenvironmental implications for the last 140 ka. Palaeoecology of Africa, 23, 129147.Google Scholar
Burrough, S. L. and Thomas, D. S. G. (2013). Central southern Africa at the time of the African Humid Period: A new analysis of Holocene palaeoenvironmental and palaeoclimate data. Quaternary Science Reviews, 80, 2946.CrossRefGoogle Scholar
Burrough, S. L., Thomas, D. S. G. and Singerayer, J. S. (2009). Late Quaternary hydrological dynamics in the Middle Kalahari: Forcing and feedbacks. Earth-Science Reviews, 96, 313326.CrossRefGoogle Scholar
Carr, A. S., Thomas, D. S. G. and Bateman, M. D. (2006). Climatic and sea level controls on Late Quaternary eolian activity on the Agulhas Plain, South Africa. Quaternary Research, 65, 252263.CrossRefGoogle Scholar
Chase, B. M. and Brewer, S. (2009). Last Glacial Maximum dune activity in the Kalahari Desert of southern Africa: Observations and simulations. Quaternary Science Reviews, 28, 301307.CrossRefGoogle Scholar
Chase, B. M. and Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews, 84, 103138.CrossRefGoogle Scholar
Chase, B. M. and Thomas, D. S. G. (2006). Late Quaternary dune accumulation along the western margin of South Africa: Distinguishing forcing mechanisms through the analysis of migratory dune forms. Earth and Planetary Science Letters, 251, 318333.CrossRefGoogle Scholar
Chase, B. M. and Thomas, D. S. G. (2007). Multiphase late Quaternary aeolian sediment accumulation in western South Africa: Timing and relationship to palaeoclimatic changes inferred from the marine record. Quaternary International, 166, 2941.CrossRefGoogle Scholar
du Pont, S. C., Narteau, C. and Gao, X. (2014). Two modes for dune orientation. Geology, 42, 743746.CrossRefGoogle Scholar
Fitzsimmons, K. E., Cohen, T. J., Hesse, P. P., Jansen, J., Nanson, G. C., May, J.-H., Barrows, T. T., Haberlah, D., Hilgers, A., Kelly, T., Larsen, J., Lomax, J. and Treble, P. (2013). Late Quaternary palaeoenvironmental change in the Australian drylands. Quaternary Science Reviews, 74, 7896.CrossRefGoogle Scholar
Flint, R. F. and Bond, G. (1968). Pleistocene sand ridges and pans in western Rhodesia. Bulletin of the Geological Society of America, 79, 299314.CrossRefGoogle Scholar
Fryberger, S. G. (1979). Dune form and wind regime. USGS Professional Paper, 1052, 137169.Google Scholar
Grove, A. T. (1969). Landforms and climate change in the Kalahari and Ngamiland. Geographical Journal, 135, 191212.CrossRefGoogle Scholar
Heine, K. (1992). On the ages of humid Late Quaternary phases in southern African arid areas (Namibia, Botswana). Palaeoecology of Africa, 23, 149164.Google Scholar
Holmes, P. J., Bateman, M. D., Thomas, D. S. G., Telfer, M. W., Barker, C. H. and Lawson, M. P. (2008). A Holocene-late Pleistocene aeolian record from lunette dunes of the western Free State panfield, South Africa. The Holocene, 18, 11931205.CrossRefGoogle Scholar
Hürkamp, K., Völkel, J., Heine, K., Bens, O., Leopold, M. and Winkelbauer, J. (2011). Late Quaternary environmental changes from aeolian and fluvial geoarchives in the southwestern Kalahari, South Africa: Implications for past African climate dynamics. South African Journal of Geology, 114, 459474.CrossRefGoogle Scholar
Lancaster, N. (1978). Composition and formation of southern Kalahari pan margin dunes. Zeitschrift für Geomorphologie, N.F., 22, 148169.Google Scholar
Lancaster, I. N. (1979). Evidence for a widespread late Pleistocene humid period in the Kalahari. Nature, 279, 145146.CrossRefGoogle Scholar
Lancaster, N. (1981). Palaeoenvironmental implications of fixed dune systems in Southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 33, 327346.CrossRefGoogle Scholar
Leighton, C. L., Bailey, R. M. and Thomas, D. S. G. (2013). The utility of desert sand dunes as Quaternary chronostratigraphic archives: Evidence from the northeastern Rub’ al Khali. Quaternary Science Reviews, 78, 303318.CrossRefGoogle Scholar
Livingstone, I., Bristow, C., Bryant, R. G., Bullard, J., White, K., Wiggs, G. F. S., Baas, A. C. W., Bateman, M. D. and Thomas, D. S. G. (2010). The Namib Sand Sea digital database of aeolian dunes and key forcing variables. Aeolian Research, 2, 93104.CrossRefGoogle Scholar
Livingstone, I. and Thomas, D. S. G. (1993). Modes of linear dune activity and their palaeoenvironmental significance: An evaluation with reference to southern African examples. In The Dynamics and Environmental Context of Aeolian Sedimentary Systems, ed. Pye, K.. Bath: Geological Society Special Publication, 72, pp. 91101.Google Scholar
McFarlane, M. J., Coetzee, S. H., Kuhn, J. R., Vanderpost, C. H. M. and Eckardt, F. D. (2007). In situ rounding of quartz grains within an African surface weathering profile in North West Ngamiland, Botswana. Zeitschrift für Geomorphologie, N.F., 51, 269286.CrossRefGoogle Scholar
McFarlane, M. J., Eckardt, F. D., Ringrose, S., Coetzee, S. H. and Kuhn, J. R. (2005). Degradation of linear dunes in Northwest Ngamiland, Botswana and the implications for luminescence dating of periods of aridity. Quaternary International, 135, 8390.CrossRefGoogle Scholar
McFarlane, M. J. and Long, C. W. (2015). Pan floor ‘barchan’ mounds, Ntwetwe Pan, Makgadikgadi, Botswana: Their origin and palaeoclimatic implications. Quaternary International, 372, 108119.CrossRefGoogle Scholar
Munyikwa, K. (2005). The role of dune morphogenetic history in the interpretation of linear dune luminescence chronologies: A review of linear dune dynamics. Progress in Physical Geography, 29, 317336.CrossRefGoogle Scholar
O’Connor, P. W. (1997). Aeolian Activity and Environmental Change in the Central Mega Kalahari: Implications for the Timing, Nature and Causes of Late Quaternary Aridity. Unpublished PhD thesis, University of Sheffield.Google Scholar
Passarge, S. (1904). Die Kalahari. Berlin: Riemer, 823pp.Google Scholar
Rust, U. (1984). Geomorphic evidence of Quaternary environmental change in Etosha, South West Africa/Namibia. In Late Cainozoic Palaeoclimates of the Southern Hemisphere, ed. Vogel, J.. Rotterdam: Balkema, pp. 279286.Google Scholar
Stokes, S., Thomas, D. S. G. and Washington, R. (1997). Multiple episodes of aridity in southern Africa since the last interglacial period. Nature, 388, 154158.CrossRefGoogle Scholar
Stone, A. E. C. and Thomas, D. S. G. (2008). Linear dune accumulation chronologies from the southwest Kalahari, Namibia: Challenges of reconstructing late Quaternary palaeoenvironments from aeolian landforms. Quaternary Science Reviews, 27, 16671681.CrossRefGoogle Scholar
Telfer, M. W., Bailey, R. M., Burrough, S. L., Stone, A. E. S., Thomas, D. S. G. and Wiggs, G. S. F. (2010). Understanding linear dune chronologies: Insights from a simple accumulation model. Geomorphology, 120, 195208.CrossRefGoogle Scholar
Telfer, M. W. and Thomas, D. S. G. (2006). Complex Holocene lunette dune development, South Africa: Implications for paleoclimate and models of pan development in arid regions. Geology, 34, 853856.CrossRefGoogle Scholar
Telfer, M. W. and Thomas, D. S. G. (2007). Late Quaternary linear dune accumulation and chronostratigraphy of the southwestern Kalahari: Implications for aeolian palaeoclimatic reconstructions and predictions of future dynamics. Quaternary Science Reviews, 26, 26172630.CrossRefGoogle Scholar
Telfer, M. W., Thomas, D. S. G., Parker, A. G., Walkington, H. and Finch, A. A. (2009). Optically Stimulated Luminescence (OSL) dating and palaeoenvironmental studies of pan (playa) sediment from Witpan, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 5060.CrossRefGoogle Scholar
Telfer, M. W., Thomas, Z. A. and Breman, E. (2011). Sand ramps in the Golden Gate Highlands National Park, South Africa: Evidence of periglacial aeolian activity during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–314, 5969.Google Scholar
Thomas, D. S. G. (1984). Ancient ergs of the former arid zones of Zimbabwe, Zambia and Angola. Transactions, Institute of British Geographers, NS, 9, 7588.CrossRefGoogle Scholar
Thomas, D. S. G. (2011). Aeolian landscapes and bedforms. In Arid Zone Geomorphology: Process, form and Change in Drylands, 3rd edition, ed. Thomas, D. S. G.. Chichester: Wiley, pp. 429453.CrossRefGoogle Scholar
Thomas, D. S. G. (2013a). Aeolian Palaeoenvironments of desert landscapes. In Treatise on Geomorphology, Vol. 11, Aeolian Geomorphology, ed. Schroder, J. F.. Oxford: Elsevier, pp. 356374.Google Scholar
Thomas, D. S. G. (2013b). Reconstructing paleoenvironments and palaeoclimates in drylands: what can landform analysis contribute? Earth Surface Processes and Landforms, 38, 316.CrossRefGoogle Scholar
Thomas, D. S. G. and Burrough, S. L. (2012). Interpreting geoproxies of late Quaternary climate change in African drylands: Implications for understanding environmental and early human behaviour. Quaternary International, 253, 517.CrossRefGoogle Scholar
Thomas, D. S. G. and Burrough, S. L. (2013). Luminescence-based dune chronologies in southern Africa: analysis and interpretation of dune database records across the subcontinent. Quaternary International, doi:10.1016/j.quaint.2013.09.008.CrossRefGoogle Scholar
Thomas, D. S. G., Holmes, P. J., Bateman, M. D. and Marker, M. E. (2002). Geomorphic evidence for late Quaternary environmental change from the eastern Great Karoo margin, South Africa. Quaternary International, 89, 151164.CrossRefGoogle Scholar
Thomas, D. S. G., Knight, M. and Wiggs, G. F. S. (2005). Remobilization of southern African desert dune systems by twenty-first century global warming. Nature, 435, 12181221.CrossRefGoogle ScholarPubMed
Thomas, D. S. G. and Leason, H. C. (2005). Dunefield activity response to climate variability in the southwest Kalahari. Geomorphology, 64, 117132.CrossRefGoogle Scholar
Thomas, D. S. G. and Shaw, P. A. (1991). The Kalahari Environment. Cambridge: Cambridge University Press, 284pp..Google Scholar
Thomas, D. S. G. and Wiggs, G. F. S. (2008). Aeolian system responses to global change: Challenges of scale, process and temporal integration. Earth Surface Processes and Landforms, 33, 13961418.CrossRefGoogle Scholar
Van Zinderen Bakker, E. M. (1975). The origin and palaeoenvironment of the Namib Desert biome. Journal of Biogeography, 2, 6573.CrossRefGoogle Scholar
Vermeesch, P., Fenton, C. R., Kober, F., Wiggs, G. F. S., Bristow, C. S. and Xu, S. (2010). Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides. Nature Geoscience, 3, 862865.CrossRefGoogle Scholar
Walden, J. and White, K. (1997). Investigation of the controls on dune colour in the Namib Sand Sea using mineral magnetic analyses. Earth and Planetary Science Letters, 152, 187201.CrossRefGoogle Scholar
Wiggs, G. F. S. (2011). Sediment mobilisation by the wind. In Arid Zone Geomorphology: Process, form and Change in Drylands, 3rd edition, ed. Thomas, D. S. G.. Chichester: Wiley, pp. 455486.CrossRefGoogle Scholar
Wiggs, G. F. S., Thomas, D. S. G., Bullard, J. E. and Livingstone, I. (1994). Dune mobility and vegetation cover in the southwest Kalahari Desert. Earth Surface Processes and Landforms, 20, 515529.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×