Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-15T05:55:44.539Z Has data issue: false hasContentIssue false

5 - State of the Field

Developmental Primate Cognition

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

A review by the ManyPrimates project confirmed long-standing beliefs about the field of primate cognition. Namely, research is driven by a handful of species, often from the same study site, and inferences are limited by small sample sizes. However, the review did not address another common practice in primate cognition: sampling only adults. Whereas adult data have been useful for comparisons to human literature for understanding cognitive abilities on an evolutionary timescale, these studies do not allow investigators to ask questions about the developmental processes underlying primate cognition. The purpose of this secondary systematic review was to provide a state of the field on developmental primate cognition by answering the following questions about recent publications using the ManyPrimates dataset: (1) how often investigators sampled infants and/or juveniles separately from adults; (2) when infants and/or juveniles were included with adults, how often was age analyzed statistically; (3) how often were studies longitudinal; (4) what topics have been studied; and (5) what techniques have been used. Results revealed that the typical recent primate cognition study did not incorporate development. Practical challenges that may preclude investigators from pursuing developmental research questions in primate cognition are discussed with recommendations to guide future research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amici, F., Aureli, F., Mundry, R., Amaro, A. S., Barroso, A. M., Ferretti, J., & Call, J. (2014). Calculated reciprocity? A comparative test with six primate species. Primates, 55, 447457.Google Scholar
Arnaud, C. M., Suzumura, T., Inoue, E., Adams, M. J., Weiss, A., & Inoue-Murayama, M. (2017). Genes, social transmission, but not maternal effects influence responses of wild Japanese macaques (Macaca fuscata) to novel-object and novel-food tests. Primates, 58, 103113.Google Scholar
Arre, A. M., Clark, C. S., & Santos, L. R. (2020). Do young rhesus macaques know what others see? A comparative developmental perspective. American Journal of Primatology, e23054.Google Scholar
Ballesta, S., & Duhamel, J.-R. (2015). Rudimentary empathy in macaques’ social decision-making. Proceedings of the National Academy of Sciences, 112, 1551615521.Google Scholar
Ballesta, S., Reymond, G., Pozzobon, M., & Duhamel, J.-R. (2014). Compete to play: Trade-off with social contact in long-tailed macaques (Macaca fascicularis). PLoS ONE, 9, e115965.Google Scholar
Bard, K. A., Bakeman, R., Boysen, S. T., & Leavens, D. A. (2014). Emotional engagements predict and enhance social cognition in young chimpanzees. Developmental Science, 17, 682696.CrossRefGoogle ScholarPubMed
Barrett, B. J., McElreath, R. L., & Perry, S. E. (2017). Pay-off-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proceedings of the Royal Society B: Biological Sciences, 284, 20170358.Google Scholar
Bettle, R., & Rosati, A. G. (2019). Flexible gaze-following in rhesus monkeys. Animal Cognition, 22, 673686.CrossRefGoogle ScholarPubMed
Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., & Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: Evidence from field experiments. Animal Cognition, 6, 213223.Google Scholar
Bjorklund, D. F., Bering, J. M., & Ragan, P. (2000). A two‐year longitudinal study of deferred imitation of object manipulation in a juvenile chimpanzee (Pan troglodytes) and orangutan (Pongo pygmaeus). Developmental Psychobiology, 37, 229237.3.0.CO;2-K>CrossRefGoogle Scholar
Bohn, M., Call, J., & Tomasello, M. (2016). Comprehension of iconic gestures by chimpanzees and human children. Journal of Experimental Child Psychology, 142, 117.Google Scholar
Botting, J., Whiten, A., Grampp, M., & van de Waal, E. (2018). Field experiments with wild primates reveal no consistent dominance-based bias in social learning. Animal Behaviour, 136, 112.CrossRefGoogle Scholar
Bouchet, H., Koda, H., & Lemasson, A. (2017). Age-dependent change in attention paid to vocal exchange rules in Japanese macaques. Animal Behaviour, 129, 8192.Google Scholar
Bründl, A. C., Tkaczynski, P. J., Nohon Kohou, G., Boesch, C., Wittig, R. M., & Crockford, C. (2021). Systematic mapping of developmental milestones in wild chimpanzees. Developmental Science, 24, e12988.Google Scholar
Caspar, K. R., Mader, L., Pallasdies, F., Lindenmeier, M., & Begall, S. (2018). Captive gibbons (Hylobatidae) use different referential cues in an object-choice task: Insights into lesser ape cognition and manual laterality. PeerJ, 6, e5348.CrossRefGoogle Scholar
Chang, L., Fang, Q., Zhang, S., Poo, M.-m., & Gong, N. (2015). Mirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training. Current Biology, 25, 212217.CrossRefGoogle ScholarPubMed
Chapman, K. M., Weiss, D. J., & Rosenbaum, D. A. (2010). Evolutionary roots of motor planning: The end-state comfort effect in lemurs. Journal of Comparative Psychology, 124, 229.Google Scholar
Corat, C., Siqueira, J., & Ottoni, E. B. (2016). Sequential organization and optimization of the nut-cracking behavior of semi-free tufted capuchin monkeys (Sapajus sp.). Primates, 57, 113121.CrossRefGoogle ScholarPubMed
Coss, R. G., Cavanaugh, C., & Brennan, W. (2019). Development of snake‐directed antipredator behavior by wild white‐faced capuchin monkeys: III. the signaling properties of alarm‐call tonality. American Journal of Primatology, 81, e22950.Google Scholar
Cronin, K. A., Jacobson, S. L., Bonnie, K. E., & Hopper, L. M. (2017). Studying primate cognition in a social setting to improve validity and welfare: A literature review highlighting successful approaches. PeerJ, 5, e3649.Google Scholar
Damerius, L. A., Forss, S. I., Kosonen, Z. K., Willems, E. P., Burkart, J. M., Call, J., Galdikas, B. M., Liebal, K., Haun, D. B., & Van Schaik, C. P. (2017). Orientation toward humans predicts cognitive performance in orang-utans. Scientific reports, 7, 112.CrossRefGoogle ScholarPubMed
Damon, F., Méary, D., Quinn, P. C., Lee, K., Simpson, E. A., Paukner, A., Suomi, S. J., & Pascalis, O. (2017). Preference for facial averageness: Evidence for a common mechanism in human and macaque infants. Scientific Reports, 7, 46303.Google Scholar
Darusman, H., Call, J., Sajuthi, D., Schapiro, S. J., Gjedde, A., Kalliokoski, O., & Hau, J. (2014). Delayed response task performance as a function of age in cynomolgus monkeys (Macaca fascicularis). Primates, 55, 259267.Google Scholar
Deshpande, A., Gupta, S., & Sinha, A. (2018). Intentional communication between wild bonnet macaques and humans. Scientific Reports, 8, 112.Google Scholar
Dettmer, A. M., Kaburu, S. S., Simpson, E. A., Paukner, A., Sclafani, V., Byers, K. L., Murphy, A. M., Miller, M., Marquez, N., & Miller, G. M. (2016). Neonatal face-to-face interactions promote later social behaviour in infant rhesus monkeys. Nature Communications, 7, 16.Google Scholar
Dettmer, A. M., Murphy, A. M., & Suomi, S. J. (2015). Development of a cognitive testing apparatus for socially housed mother‐peer‐reared infant rhesus monkeys. Developmental Psychobiology, 57, 349355.Google Scholar
Ebel, S. J., & Call, J. (2018). The interplay of prior experience and motivation in great ape problem-solving (Gorilla gorilla, Pan paniscus, Pan troglodytes, and Pongo abelii). Journal of Comparative Psychology, 132, 294.Google Scholar
Eckert, J., Call, J., Hermes, J., Herrmann, E., & Rakoczy, H. (2018). Intuitive statistical inferences in chimpanzees and humans follow Weber’s law. Cognition, 180, 99107.Google Scholar
Fawcett, G., Dettmer, A., Kay, D., Raveendran, M., Higley, J., Ryan, N., Cameron, J., & Rogers, J. (2014). Quantitative genetics of response to novelty and other stimuli by infant rhesus macaques (Macaca mulatta) across three behavioral assessments. International Journal of Primatology, 35, 325339.CrossRefGoogle ScholarPubMed
Festante, F., Vanderwert, R. E., Sclafani, V., Paukner, A., Simpson, E. A., Suomi, S. J., Fox, N. A., & Ferrari, P. F. (2018). EEG beta desynchronization during hand goal-directed action observation in newborn monkeys and its relation to the emergence of hand motor skills. Developmental Cognitive Neuroscience, 30, 142149.CrossRefGoogle Scholar
Forss, S. I. F., Motes‐Rodrigo, A., Hrubesch, C., & Tennie, C. (2019). Differences in novel food response between Pongo and Pan. American Journal of Primatology, 81, e22945.CrossRefGoogle ScholarPubMed
Forss, S. I., Willems, E., Call, J., & van Schaik, C. P. (2016). Cognitive differences between orang-utan species: A test of the cultural intelligence hypothesis. Scientific Reports, 6, 30516.Google Scholar
Gazes, R. P., Lutz, M. C., Meyer, M. J., Hassett, T. C., & Hampton, R. R. (2019). Influences of demographic, seasonal, and social factors on automated touchscreen computer use by rhesus monkeys (Macaca mulatta) in a large naturalistic group. PLoS ONE, 14, e0215060.Google Scholar
Goursaud, A. P. S., Wallen, K., & Bachevalier, J. (2014). Mother recognition and preference after neonatal amygdala lesions in rhesus macaques (Macaca mulatta) raised in a semi‐naturalistic environment. Developmental Psychobiology, 56, 17231734.Google Scholar
Gunhold, T., Massen, J. J., Schiel, N., Souto, A., & Bugnyar, T. (2014). Memory, transmission and persistence of alternative foraging techniques in wild common marmosets. Animal Behaviour, 91, 7991.CrossRefGoogle ScholarPubMed
Gunhold, T., Whiten, A., & Bugnyar, T. (2014). Video demonstrations seed alternative problem-solving techniques in wild common marmosets. Biology Letters, 10, 20140439.Google Scholar
Gustafsson, E., Saint Jalme, M., Bomsel, M.-C., & Krief, S. (2014). Food neophobia and social learning opportunities in great apes. International Journal of Primatology, 35, 10371071.Google Scholar
Henkel, S., & Setchell, J. M. (2018). Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proceedings of the Royal Society B, 285, 20181527.Google Scholar
Hopkins, W. D., Mareno, M. C., Neal Webb, S. J., Schapiro, S. J., Raghanti, M. A., & Sherwood, C. C. (2020). Age-related changes in chimpanzee (Pan troglodytes) cognition: Cross-sectional and longitudinal analyses. American Journal of Primatology, 83, e23214.CrossRefGoogle ScholarPubMed
Huebner, F., & Fichtel, C. (2015). Innovation and behavioral flexibility in wild redfronted lemurs (Eulemur rufifrons). Animal Cognition, 18, 777787.Google Scholar
Huebner, F., Fichtel, C., & Kappeler, P. M. (2018). Linking cognition with fitness in a wild primate: Fitness correlates of problem-solving performance and spatial learning ability. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170295.Google Scholar
Isbell, L. A., & Etting, S. F. (2017). Scales drive detection, attention, and memory of snakes in wild vervet monkeys (Chlorocebus pygerythrus). Primates, 58, 121129.Google Scholar
Kaburu, S. S., Paukner, A., Simpson, E. A., Suomi, S. J., & Ferrari, P. F. (2016). Neonatal imitation predicts infant rhesus macaque (Macaca mulatta) social and anxiety-related behaviours at one year. Scientific Reports, 6, 18.Google Scholar
Kawai, N., Yasue, M., Banno, T., & Ichinohe, N. (2014). Marmoset monkeys evaluate third-party reciprocity. Biology Letters, 10, 20140058.Google Scholar
Kittler, K., Kappeler, P. M., & Fichtel, C. (2018). Instrumental problem-solving abilities in three lemur species (Microcebus murinus, Varecia variegata, and Lemur catta). Journal of Comparative Psychology, 132, 306314.Google Scholar
Kret, M. E., Muramatsu, A., & Matsuzawa, T. (2018). Emotion processing across and within species: A comparison between humans (Homo sapiens) and chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 132, 395409.Google Scholar
Krupenye, C., & Hare, B. (2018). Bonobos prefer individuals that hinder others over those that help. Current Biology, 28, 280286.Google Scholar
Kulahci, I. G., Ghazanfar, A. A., & Rubenstein, D. I. (2018). Knowledgeable lemurs become more central in social networks. Current Biology, 28, 13061310.Google Scholar
Lacreuse, A., Raz, N., Schmidtke, D., Hopkins, W. D., & Herndon, J. G. (2020). Age-related decline in executive function as a hallmark of cognitive ageing in primates: An overview of cognitive and neurobiological studies. Philosophical Transactions of the Royal Society B, 375, 20190618.Google Scholar
Larke, R. H., Toubiana, A., Lindsay, K. A., Mendoza, S. P., & Bales, K. L. (2017). Infant titi monkey behavior in the open field test and the effect of early adversity. American Journal of Primatology, 79, e22678.Google Scholar
Lucca, K., MacLean, E. L., & Hare, B. (2018). The development and flexibility of gaze alternations in bonobos and chimpanzees. Developmental Science, 21, e12598.Google Scholar
Lynch Alfaro, J. W., Silva, J. Jr., & Rylands, A. B. (2012). How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American Journal of Primatology, 74, 273286.Google Scholar
Madrid, J. E., Oztan, O., Sclafani, V., Del Rosso, L. A., Calonder, L. A., Chun, K., Capitanio, J. P., Garner, J. P., & Parker, K. J. (2017). Preference for novel faces in male infant monkeys predicts cerebrospinal fluid oxytocin concentrations later in life. Scientific Reports, 7, 18.Google Scholar
Mandalaywala, T. M., Petrullo, L. A., Parker, K. J., Maestripieri, D., & Higham, J. P. (2017). Vigilance for threat accounts for inter‐individual variation in physiological responses to adversity in rhesus macaques: A cognition × environment approach. Developmental Psychobiology, 59, 10311038.Google Scholar
ManyPrimates, Altschul, D. M., Beran, M. J., Bohn, M., Call, J., DeTroy, S., Duguid, S. J., Egelkamp, C. L., Fichtel, C., & Fischer, J. (2019). Establishing an infrastructure for collaboration in primate cognition research. PLoS ONE, 14, e0223675.Google Scholar
ManyPrimates, Altschul, D. M., Beran, M. J., Bohn, M., Caspar, K. R., Fichtel, C., Försterling, M., Grebe, N. M., Hernandez-Aguilar, R. A., Kwok, S. C., Llorente, M., Motes-Rodrigo, A., Proctor, D., Sánchez-Amaro, A., Simpson, E. A., Szabelska, A., Taylor, D., van der Mescht, J., Völter, C. J., & Watzek, J. (2019). Collaborative open science as a way to reproducibility and new insights in primate cognition research. Japanese Psychological Review, 62, 205220.Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151, 264269.Google Scholar
Molesti, S., & Majolo, B. (2016). Cooperation in wild Barbary macaques: Factors affecting free partner choice. Animal Cognition, 19, 133146.Google Scholar
Monfardini, E., Hadj-Bouziane, F., & Meunier, M. (2014). Model-observer similarity, error modeling and social learning in rhesus macaques. PLoS ONE, 9, e89825.Google Scholar
Morton, F. B., Brosnan, S. F., Prétôt, L., Buchanan-Smith, H. M., O’Sullivan, E., Stocker, M., D’Mello, D., & Wilson, V. A. (2016). Using photographs to study animal social cognition and behaviour: Do capuchins’ responses to photos reflect reality? Behavioural Processes, 124, 3846.CrossRefGoogle ScholarPubMed
Murphy, A. M., & Dettmer, A. M. (2020). Impacts of early social experience on cognitive development in infant rhesus macaques. Developmental Psychobiology, 62, 895908.Google Scholar
Muschinski, J., Feczko, E., Brooks, J. M., Collantes, M., Heitz, T. R., & Parr, L. A. (2016). The development of visual preferences for direct versus averted gaze faces in infant macaques (Macaca mulatta). Developmental Psychobiology, 58, 926936.Google Scholar
Nelissen, K., & Vanduffel, W. (2017). Action categorization in rhesus monkeys: Discrimination of grasping from non-grasping manual motor acts. Scientific Reports, 7, 110.Google Scholar
Neves Filho, H. B., de Carvalho Neto, M. B., Taytelbaum, G. P. T., dos Santos Malheiros, R., & Knaus, Y. C. (2016). Effects of different training histories upon manufacturing a tool to solve a problem: Insight in capuchin monkeys (Sapajus spp.). Animal Cognition, 19, 11511164.Google Scholar
Palagi, E., Norscia, I., & Cordoni, G. (2019). Lowland gorillas (Gorilla gorilla gorilla) failed to respond to others’ yawn: Experimental and naturalistic evidence. Journal of Comparative Psychology, 133, 406.Google Scholar
Parr, L. A., Murphy, L., Feczko, E., Brooks, J., Collantes, M., & Heitz, T. R. (2016). Experience‐dependent changes in the development of face preferences in infant rhesus monkeys. Developmental Psychobiology, 58, 10021018.Google Scholar
Parron, C., & Meguerditchian, A. (2016). Gaze following in baboons (Papio anubis): Juveniles adjust their gaze and body position to human’s head redirections. American Journal of Primatology, 78, 12651271.Google Scholar
Paukner, A., Pedersen, E. J., & Simpson, E. A. (2017). Testing the arousal hypothesis of neonatal imitation in infant rhesus macaques. PLoS ONE, 12, e0178864.Google Scholar
Paukner, A., Simpson, E. A., Ferrari, P. F., Mrozek, T., & Suomi, S. J. (2014). Neonatal imitation predicts how infants engage with faces. Developmental Science, 17, 833840.CrossRefGoogle ScholarPubMed
Paukner, A., Slonecker, E. M., Murphy, A. M., Wooddell, L. J., & Dettmer, A. M. (2018). Sex and rank affect how infant rhesus macaques look at faces. Developmental Psychobiology, 60, 187193.Google Scholar
Pfefferle, D., Kazem, A. J., Brockhausen, R. R., Ruiz-Lambides, A. V., & Widdig, A. (2014). Monkeys spontaneously discriminate their unfamiliar paternal kin under natural conditions using facial cues. Current Biology, 24, 18061810.Google Scholar
Reddy, R. B., MacLean, E. L., Sandel, A. A., & Hare, B. (2015). Social inhibitory control in five lemur species. Primates, 56, 241252.Google Scholar
Rivière, J., Stomp, M., Augustin, E., Lemasson, A., & Blois‐Heulin, C. (2018). Decision‐making under risk of gain in young children and mangabey monkeys. Developmental Psychobiology, 60, 176186.Google Scholar
Rosati, A. G., Arre, A. M., Platt, M. L., & Santos, L. R. (2016). Rhesus monkeys show human-like changes in gaze following across the lifespan. Proceedings of the Royal Society B: Biological Sciences, 283, 20160376.Google Scholar
Rosati, A. G., DiNicola, L. M., & Buckholtz, J. W. (2018). Chimpanzee cooperation is fast and independent from self-control. Psychological Science, 29, 18321845.Google Scholar
Rosati, A. G., & Santos, L. R. (2016). Spontaneous metacognition in rhesus monkeys. Psychological Science, 27, 11811191.Google Scholar
Rosati, A. G., & Santos, L. R. (2017). Tolerant Barbary macaques maintain juvenile levels of social attention in old age, but despotic rhesus macaques do not. Animal Behaviour, 130, 199207.Google Scholar
Rosati, A. G., Wobber, V., Hughes, K., & Santos, L. R. (2014). Comparative developmental psychology: How is human cognitive development unique? Evolutionary Psychology, 12, 147470491401200211.Google Scholar
Ryan, A. M., Freeman, S. M., Murai, T., Lau, A. R., Palumbo, M. C., Hogrefe, C. E., Bales, K. L., & Bauman, M. D. (2019). Non-invasive eye tracking methods for new world and old world monkeys. Frontiers in Behavioral Neuroscience, 13, 39.Google Scholar
Saito, A., Hayashi, M., Takeshita, H., & Matsuzawa, T. (2014). The origin of representational drawing: A comparison of human children and chimpanzees. Child Development, 85, 22322246.Google Scholar
Schmidtke, D., Ammersdörfer, S., Joly, M., & Zimmermann, E. (2018). First comparative approach to touchscreen-based visual object–location paired-associates learning in humans (Homo sapiens) and a nonhuman primate (Microcebus murinus). Journal of Comparative Psychology, 132, 315.Google Scholar
Schnoell, A. V., Dittmann, M. T., & Fichtel, C. (2014). Human-introduced long-term traditions in wild redfronted lemurs? Animal Cognition, 17, 4554.Google Scholar
Sclafani, V., Del Rosso, L. A., Seil, S. K., Calonder, L. A., Madrid, J. E., Bone, K. J., Sherr, E. H., Garner, J. P., Capitanio, J. P., & Parker, K. J. (2016). Early predictors of impaired social functioning in male rhesus macaques (Macaca mulatta). PLoS ONE, 11, e0165401.Google Scholar
Sclafani, V., Paukner, A., Suomi, S. J., & Ferrari, P. F. (2015). Imitation promotes affiliation in infant macaques at risk for impaired social behaviors. Developmental Science, 18, 614621.CrossRefGoogle ScholarPubMed
Sclafani, V., Simpson, E. A., Suomi, S. J., & Ferrari, P. F. (2015). Development of space perception in relation to the maturation of the motor system in infant rhesus macaques (Macaca mulatta). Neuropsychologia, 70, 429441.Google Scholar
Seed, A., & Tomasello, M. (2010). Primate cognition. Topics in Cognitive Science, 2, 407419.Google Scholar
Shettleworth, S. J. (2009). Cognition, evolution, and behavior. Oxford University Press.Google Scholar
Simpson, E. A., Jakobsen, K. V., Damon, F., Suomi, S. J., Ferrari, P. F., & Paukner, A. (2017). Face detection and the development of own‐species bias in infant macaques. Child Development, 88, 103113.Google Scholar
Simpson, E. A., Maylott, S. E., Lazo, R. J., Leonard, K. A., Kaburu, S. S., Suomi, S. J., Paukner, A., & Ferrari, P. F. (2019). Social touch alters newborn monkey behavior. Infant Behavior and Development, 57, 101368.Google Scholar
Simpson, E. A., Miller, G. M., Ferrari, P. F., Suomi, S. J., & Paukner, A. (2016). Neonatal imitation and early social experience predict gaze following abilities in infant monkeys. Scientific Reports, 6, 20233.CrossRefGoogle ScholarPubMed
Simpson, E. A., Nicolini, Y., Shetler, M., Suomi, S. J., Ferrari, P. F., & Paukner, A. (2016). Experience-independent sex differences in newborn macaques: Females are more social than males. Scientific Reports, 6, 19669.Google Scholar
Simpson, E. A., Paukner, A., Pedersen, E. J., Ferrari, P. F., & Parr, L. A. (2019). Visual preferences for direct‐gaze faces in infant macaques (Macaca mulatta) with limited face exposure. Developmental Psychobiology, 61, 228238.Google Scholar
Simpson, E. A., Paukner, A., Sclafani, V., Kaburu, S. S., Suomi, S. J., & Ferrari, P. F. (2017). Acute oxytocin improves memory and gaze following in male but not female nursery-reared infant macaques. Psychopharmacology, 234, 497506.Google Scholar
Simpson, E. A., Paukner, A., Suomi, S. J., & Ferrari, P. F. (2014). Visual attention during neonatal imitation in newborn macaque monkeys. Developmental Psychobiology, 56, 864870.Google Scholar
Simpson, E. A., Sclafani, V., Paukner, A., Hamel, A. F., Novak, M. A., Meyer, J. S., Suomi, S. J., & Ferrari, P. F. (2014). Inhaled oxytocin increases positive social behaviors in newborn macaques. Proceedings of the National Academy of Sciences, 111, 69226927.Google Scholar
Simpson, E. A., Sclafani, V., Paukner, A., Kaburu, S. S., Suomi, S. J., & Ferrari, P. F. (2019). Handling newborn monkeys alters later exploratory, cognitive, and social behaviors. Developmental Cognitive Neuroscience, 35, 1219.Google Scholar
Simpson, E. A., Suomi, S. J., & Paukner, A. (2016). Evolutionary relevance and experience contribute to face discrimination in infant macaques (Macaca mulatta). Journal of Cognition and Development, 17, 285299.Google Scholar
Sirianni, G., Wittig, R. M., Gratton, P., Mundry, R., Schüler, A., & Boesch, C. (2018). Do chimpanzees anticipate an object’s weight? A field experiment on the kinematics of hammer-lifting movements in the nut-cracking Taï chimpanzees. Animal Cognition, 21, 109118.Google Scholar
Šlipogor, V., Gunhold‐de Oliveira, T., Tadić, Z., Massen, J. J., & Bugnyar, T. (2016). Consistent inter‐individual differences in common marmosets (Callithrix jacchus) in boldness‐shyness, stress‐activity, and exploration‐avoidance. American Journal of Primatology, 78, 961973.Google Scholar
Slonecker, E. M., Simpson, E. A., Suomi, S. J., & Paukner, A. (2018). Who’s my little monkey? Effects of infant‐directed speech on visual retention in infant rhesus macaques. Developmental Science, 21, e12519.CrossRefGoogle ScholarPubMed
Takahashi, D. Y., Liao, D. A., & Ghazanfar, A. A. (2017). Vocal learning via social reinforcement by infant marmoset monkeys. Current Biology, 27, 18441852. e1846.Google Scholar
Tan, J., Ariely, D., & Hare, B. (2017). Bonobos respond prosocially toward members of other groups. Scientific Reports, 7, 111.Google Scholar
Taylor, J. H., Mustoe, A. C., & French, J. A. (2014). Behavioral responses to social separation stressor change across development and are dynamically related to HPA activity in marmosets. American Journal of Primatology, 76, 239248.Google Scholar
Troisi, C. A., Hoppitt, W. J., Ruiz-Miranda, C. R., & Laland, K. N. (2018). Food-offering calls in wild golden lion tamarins (Leontopithecus rosalia): Evidence for teaching behavior? International Journal of Primatology, 39, 11051123.Google Scholar
Truppa, V., Sabbatini, G., Izar, P., Fragaszy, D. M., & Visalberghi, E. (2021). Anticipating future actions: Motor planning improves with age in wild bearded capuchin monkeys (Sapajus libidinosus). Developmental Science, e13077.Google Scholar
Tujague, M. P., Janson, C. H., & Lahitte, H. B. (2015). Long-term spatial memory and learning set formation in captive capuchin monkeys (Cebus libidinosus = Sapajus cay). International Journal of Primatology, 36, 10671085.Google Scholar
Vanderwert, R. E., Simpson, E. A., Paukner, A., Suomi, S. J., Fox, N. A., & Ferrari, P. F. (2015). Early social experience affects neural activity to affiliative facial gestures in newborn nonhuman primates. Developmental Neuroscience, 37, 243252.Google Scholar
Völter, C. J., & Call, J. (2014a). The cognitive underpinnings of flexible tool use in great apes. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 287302.Google Scholar
Völter, C. J., & Call, J. (2014b). Younger apes and human children plan their moves in a maze task. Cognition, 130, 186203.Google Scholar
Völter, C. J., & Call, J. (2018). Intuitive optics: What great apes infer from mirrors and shadows. Animal Cognition, 21, 493512.Google Scholar
Wobber, V., Herrmann, E., Hare, B., Wrangham, R., & Tomasello, M. (2014). Differences in the early cognitive development of children and great apes. Developmental Psychobiology, 56, 547573.Google Scholar
Woo, D. H., Koh, E. H., Shin, S.-H., Yang, Y.-S., Choe, J. C., Lee, C. J., & Han, S.-C. (2018). Visual stimulation-induced mild stress enhances cognitive behavior in cynomolgus monkey. Scientific Reports, 8, 19.Google Scholar
Wood, L. A., & Whiten, A. (2017). Visible spatial contiguity of social information and reward affects social learning in brown capuchins (Sapajus apella) and children (Homo sapiens). Journal of Comparative Psychology, 131, 304316.Google Scholar
Wooddell, L. J., Simpson, E. A., Murphy, A. M., Dettmer, A. M., & Paukner, A. (2019). Interindividual differences in neonatal sociality and emotionality predict juvenile social status in rhesus monkeys. Developmental Science, 22, e12749.Google Scholar
Zander, S. L., & Judge, P. G. (2015). Brown capuchin monkeys (Sapajus apella) plan their movements on a grasping task. Journal of Comparative Psychology, 129, 181188.Google Scholar
Zhou, L., Wang, Z., Zhou, H., Liu, T., Lu, F., Wang, S., Li, J., Peng, S., & Zuo, Z. (2015). Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of Cynomolgus monkeys. Scientific Reports, 5, 11145.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×