Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-15T05:51:08.840Z Has data issue: false hasContentIssue false

25 - Do Monkeys Belong in the Ape House?

Comparing Cognition across Primate Species

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

There are surprisingly few experimental studies directly comparing the cognition of primate species representing distinct phylogenetic groupings, specialized foraging ecologies, or unique social structures. Although researchers have focused on the role of foraging and social ecology in predicting cognition, they have examined social and foraging strategies in a nuanced fashion that would permit an understanding of how specific aspects of a species’ natural environment might sculpt the evolution of specific forms of cognition. In the absence of such studies, and a clear consensus as to whether cognition should best be viewed as domain-general or domain-specific suites of abilities, it is challenging to draw conclusions as to (1) cognitive differences between primate families or (2) selection pressures responsible for shaping differences. We conclude, based on paltry but accumulating evidence, that there is little utility in postulating separate physical and social domains. In addition, we see little evidence that group-living species are cognitively advantaged compared to primates that exhibit other social structures. Lastly, we advocate for greater attention to reproductive and parental strategies and individual differences in ontogenetic experiences that may color species-level comparisons.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J. M., McLaughlin, T., & Hakeem, A. (1993). Brain-weight and life-span in primate species. Proceedings of the National Academy of Sciences of the USA, 90, 118122.CrossRefGoogle ScholarPubMed
Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology, 18, 14151419.Google Scholar
Amici, F., Aureli, F., & Call, C. (2010). Monkeys and apes: Are their cognitive skills really so different? American Journal of Physical Anthropology, 143, 188197.Google Scholar
Amici, F., Barney, B., Johnson, V. E., Call, J., & Aureli, F. (2012). A modular mind? A test using individual data from seven primate species. PLoS ONE, 7, e51918.CrossRefGoogle ScholarPubMed
Amici, F, Call, J, & Aureli, F. (2009). Variation in withholding of information in three monkey species. Proceedings of Royal Society B, 276, 33113318.Google Scholar
Amiel, J. J., Tingley, R., & Shine, R. (2011). Smart moves: Effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS ONE, 6, e18277.CrossRefGoogle ScholarPubMed
Anand, M., Gonzalez, A., Guichard, F., Kolasa, J., & Parrott, L. (2010). Ecological systems as complex systems: Challenges for an emerging science. Diversity, 2, 395410.Google Scholar
Anderson, J. R. (1984). Monkeys with mirrors: Some questions for primate psychology. International Journal of Primatology, 5, 8198.CrossRefGoogle Scholar
Anderson, M. R. (2012). Comprehension of object permanence and single transposition in gibbons. Behaviour, 149, 441459.Google Scholar
Bandini, E., & Tennie, C. (2019). Individual acquisition of “stick pounding” behavior by naïve chimpanzees. American Journal of Primatology, 81, e22987.Google Scholar
Banerjee, K., Chabris, C. F., Johnson, V. E., Lee, J. J., Tsao, F., & Hauser, M. D. (2009). General intelligence in another primate: Individual differences across cognitive task performance in a new world monkey (Saguinus oedipus). PLoS ONE, 4, e5883.CrossRefGoogle Scholar
Bard, K. A., Bakeman, R., Boysen, S. T., & Leavens, D. A. (2014). Emotional engagements predict and enhance social cognition in young chimpanzees. Developmental Science, 17, 682696.Google Scholar
Barrett, L. (2011). Beyond the brain: How body and environment shape animal and human minds. Princeton University Press.Google Scholar
Barrett, L. (2015). A better kind of continuity. The Southern Journal of Philosophy, 53, 2849.Google Scholar
Barrett, L. (2016). The (r)evolution of primate cognition: Does the social intelligence hypothesis lead us around in anthropocentric circles? In Kiverstein, J. (Ed.), The Routledge handbook of the social mind (pp. 1934). Routledge.Google Scholar
Barrett, L., Henzi, S. P., & Dunbar, R. (2003). Primate cognition: From “what now?” to “what if?” Trends in Cognitive Sciences, 7, 494497.CrossRefGoogle Scholar
Barth, J., & Call, J. (2006). Tracking the displacement of objects: A series of tasks with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 32, 239252.Google Scholar
Barton, R. A., & Venditti, C. (2014). Rapid evolution of the cerebellum in humans and other great apes. Current Biology, 24, 24402444.Google Scholar
Basabose, A. K. (2002). Diet composition of chimpanzees inhabiting the Montane forest of Kahuzi, Democratic Republic of Congo. American Journal of Primatology, 58, 121.Google Scholar
Bearder, S. K. (1987). Lorises, bushbabies, and tarsiers: Diverse societies in solitary foragers. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W. (Eds.), Primate societies (pp. 1124). University of Chicago Press.Google Scholar
Bearder, S. K. (1999). Physical and social diversity among nocturnal primates: A new view based on long term research. Primates, 40, 267282.Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. PNAS, 113, 25322537.Google Scholar
Bering, J. (2004). A critical review of the enculturation hypothesis: The effects of human rearing on great ape social cognition. Animal Cognition, 7, 201212.Google Scholar
Bernstein-Kurtycz, L. M., Hopper, L. M., Ross, S. R., & Tennie, C. (2020). Zoo-housed chimpanzees can spontaneously use tool sets but perseverate on previously successful tool-use methods. Animal Behavior and Cognition, 7, 288309.Google Scholar
Boesch, C. (1991). Teaching among wild chimpanzees. Animal Behaviour, 41, 530532.Google Scholar
Boesch, C. (2007). What makes us human (Homo sapiens)? The challenge of cognitive cross-species comparison. Journal of Comparative Psychology, 121, 227240.Google Scholar
Boesch, C. (2020). Mothers, environment, and ontogeny affect cognition. Animal Behavior and Cognition, 7, 474489.Google Scholar
Boinski, S., Quatrone, R. P., & Swartz, H. (2000). Substrate and tool use by Brown Capuchins in Suriname: Ecological contexts and cognitive biases. American Anthropologist, 102, 741761.Google Scholar
Boose, K. J., White, F. J., & Meinelt, A. (2013). Sex differences in tool use acquisition in bonobos (Pan paniscus). American Journal of Primatology, 75, 917926.CrossRefGoogle ScholarPubMed
Boucherie, P. H., Loretto, M., Massen, J. J. M., & Bugnyar, T. (2019). What constitutes “social complexity” and “social intelligence” in birds? lessons from ravens. Behavioral Ecology and Sociobiology, 73, 14.CrossRefGoogle ScholarPubMed
Brosnan, S. F., Parrish, A., Beran, M. J., Flemming, T., Heimbauer, L., Talbot, C. F., Lambeth, S. P., Schapiro, S. J., & Wilsone, B. J. (2011). Responses to the assurance game in monkeys, apes, and humans using equivalent procedures. PNAS Proceedings of the National Academy of Sciences of the United States of America, 108, 34423447.Google Scholar
Burkart, J. M., Fehr, E., Efferson, C., & van Schaik, C. P. (2007). Other-regarding preferences in a non-human primate: Common marmosets provision food altruistically. PNAS, 104, 1976219766.CrossRefGoogle Scholar
Burkart, J. M., Schubiger, M. N., & van Schaik, C. P. (2017). Future directions for studying the evolution of general intelligence. Behavioral and Brain Sciences, 40, 124.Google Scholar
Burkart, J. M., & van Schaik, C. P. (2010). Cognitive consequences of cooperative breeding in primates? Animal Cognition, 13, 119.Google Scholar
Burkart, J. M., & van Schaik, C. P. (2016). Revisiting the consequences of cooperative breeding. Journal of Zoology, 299, 7783.Google Scholar
Butler, D., & Suddendorf, T. (2014). Reducing the neural search space for hominid cognition: What distinguishes human and great ape brains from those of small apes? Psychonomic Bulletin, & Review, 21, 590619.Google Scholar
Byrne, R. W. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In Whiten, A., & Byrne, R. W. (Eds.), Machiavellian intelligence, vol II: Extensions and evaluations (pp. 289211). Cambridge University Press.CrossRefGoogle Scholar
Byrne, R. W., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford University Press.Google Scholar
Call, J. (2004). Inferences about the location of food in the great apes (pan paniscus, pan troglodytes, gorilla gorilla, and pongo pygmaeus). Journal of Comparative Psychology, 118, 232241.Google Scholar
Call, J. (2006). Inferences by exclusion in the great apes: The effect of age and species. Animal Cognition, 9, 393403.Google Scholar
Call, J. (2007). Apes know that hidden objects can affect the orientation of other objects. Cognition, 105, 125.Google Scholar
Call, J., & Santos, L. (2012). Understanding other minds. In Mitani, J., Call, J., Kappeler, P., Palombit, R., Silk, J. B. (Eds.), The evolution of primate societies. The University of Chicago Press.Google Scholar
Cantlon, J. F. (2018). How evolution constrains human numerical concepts. Child Development Perspectives, 12, 6571.CrossRefGoogle ScholarPubMed
Cauchoix, M., Chow, P. K. Y., van Horik, J. O., Atance, C. M., Barbeau, E. J., Barragan-Jason, G., Bize, P., Boussard, A., Buechel, S. D., Cabirol, A., Cauchard, L., Claidière, N., Dalesman, S., Devaud, J. M., Didic, M., Doligez, B., Fagot, J., Fichtel, C., Henke-von der Malsburg, J., … & Morand-Ferron, J. (2018). The repeatability of cognitive performance: A meta-analysis. Philosophical Transactions of the Royal Society, B, 373, 20170281.CrossRefGoogle ScholarPubMed
Chapman, C. A., & Chapman, L. J. (1990). Dietary variability in primate populations. Primates, 31, 121128.Google Scholar
Chivers, D. J. (1994). Functional anatomy of the gastrointestinal tract. In Davies, A. G., & Oates, J. F. (Eds.), Colobine monkeys: Their ecology, behavior, and evolution (pp. 205228). Cambridge University Press.Google Scholar
Clutton-Brock, T., Albon, S. D., & Harvey, P. H. (1980). Antlers, body size and breeding group size in the cervidae. Nature, 285, 565567.CrossRefGoogle Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1977). Primate ecology and social organization. Journal of Zoology, 183, 139.Google Scholar
Coussi-Korbel, S. (1994). Learning to outwit a competitor in mangabeys (Cercocebus torquatus torquatus). Journal of Comparative Psychology 108, 164171.Google Scholar
Cummins-Sebree, S., & Fragaszy, D. M. (2005). Choosing and using tools: Capuchins (Cebus apella) use a different metric than tamarins (Saguinus oedipus). Journal of Comparative Psychology, 119, 210219.Google Scholar
Cunningham, C. L., Anderson, J. R., & Mootnick, A. R. (2006). Object manipulation to obtain a food reward in hoolock gibbons bunopithecus hoolock. Animal Behaviour, 71, 621629.Google Scholar
Damerius, L. A., Burkart, J. M., van Noordwijk, M. A., Haun, D. B. M., Kosonen, Z. K., Galdikas, B. M. F., Saraswati, Y., Kurniawan, D., & van Schaik, C. P. (2019). General cognitive abilities in orangutans (Pongo abelii and Pongo pygmaeus). Intelligence, 74, 311.Google Scholar
Davenport, R. K., Rogers, C. M., & Rumbaugh, D. M. (1973). Long-term cognitive deficits in chimpanzees associated with early impoverished rearing. Developmental Psychology, 9, 343347.CrossRefGoogle Scholar
Deaner, R. O., Barton, R. A., & van Schaik, C. P. (2003). Primate brains and life histories: Renewing the connection. In Kappeler, P. M., & Pereira, M. E. (Eds.), Primate life histories and socioecology (pp. 233265). The University of Chicago Press.Google Scholar
Deaner, R. O., Isler, K., Burkart, J., & van Schaik, C. (2007). Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain, Behavior, and Evolution, 70, 115124.Google Scholar
Deaner, R. O., Johnson, V. E., & van Schaik, C. P. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolutionary Psychology, 4, 149196.Google Scholar
de Blois, S. T., Novak, M. A., & Bond, M. (1998). Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology, 112, 137152.Google Scholar
DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology, & Evolution, 1, 0112.Google Scholar
delBarco-Trillo, J., & Drea, C. M. (2014). Socioecological and phylogenetic patterns in the chemical signals of strepsirrhine primates. Animal Behaviour, 97, 249253.Google Scholar
Di Fiore, A., & Campbell, C. J. (2007). The atelines: Variation in ecology, behavior, and social organization. In Campbell, C. J., Fuentes, A., Makinnon, K. C., Panger, M., & Bearder, S. K. (Eds.), Primates in perspective (pp. 155185). Oxford University Press.Google Scholar
Dunbar, R. I. (1983). Structure of gelada baboon reproductive units: IV. Integration at group level. Zeitschrift Für Tierpsychologie, 63, 265282.Google Scholar
Dunbar, R. I. M. (1988). Primate social systems. Cornell University Press.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178189.Google Scholar
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36, 562572.Google Scholar
Dunbar, R. I. M., & Schultz, S. (2007). Evolution in the social brain. Science, 317, 13441347.Google Scholar
Fagot, J., & Maugard, A. (2013). Analogical reasoning in baboons (Papio papio): Flexible reencoding of the source relation depending on the target relation. Learning, & Behavior, 41, 229237.Google Scholar
Fagot, J., & Parron, C. (2010). Relational matching in baboons (Papio papio) with reduced grouping requirements. Journal of Experimental Psychology: Animal Behavior Processes, 36, 184193.Google Scholar
Fedor, A., Skollár, G., Szerencsy, N., & Ujhelyi, M. (2008). Object permanence tests on gibbons (hylobatidae). Journal of Comparative Psychology, 122, 403417.CrossRefGoogle ScholarPubMed
Ferdowsian, H., Durham, D., & Brüne, M. (2013). Mood and anxiety disorders in chimpanzees (Pan troglodytes): A response to rosati et al. (2012). Journal of Comparative Psychology, 127, 337340.Google Scholar
Ferdowsian, H. R., Durham, D. L., Kimwele, C., Kranendonk, G., Otali, E., Akugizibwe, T., … & Johnson, C. M. (2011). Signs of mood and anxiety disorders in chimpanzees. PLoS ONE, 6, e19855.Google Scholar
Fernandes, H. B. F., Woodley, M. A., & te Nijenhuis, J. (2014). Differences in cognitive abilities among primates are concentrated on G: Phenotypic and phylogenetic comparisons with two meta-analytical databases. Intelligence, 46, 311322.CrossRefGoogle Scholar
Fichtel, C., Dinter, K., & Kappeler, P. (2020). The lemur baseline: How lemurs compare to monkeys and apes in the primate cognition test battery. BioRxiv [preprint].CrossRefGoogle Scholar
Fleagle, J. G. (1998). Primate adaptation and evolution. Academic Press.Google Scholar
Flemming, T. M., Beran, M. J., Thompson, R. K. R., Kleider, H. M., & Washburn, D. A. (2008). What meaning means for same and different: Analogical reasoning in humans (Homo sapiens), chimpanzees (Pan troglodytes), and rhesus monkeys (Macaca mulatta). Journal of Comparative Psychology, 122, 176185.Google Scholar
Flemming, T. M., & Kennedy, E. H. (2011). Chimpanzee (Pan troglodytes) relational matching: Playing by their own (analogical) rules. Journal of Comparative Psychology, 125, 207215.Google Scholar
Flemming, T. M., Thompson, R. K. R., & Fagot, J. (2013). Baboons, like humans, solve analogy by categorical abstraction of relations. Animal Cognition, 16, 519524.Google Scholar
Fonseca-Azevedo, K., & Herculano-Houzel, S. (2012). Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. PNAS, 109, 1857118576.CrossRefGoogle ScholarPubMed
Freeberg, T. M., Dunbar, R. I. M., & Ord, T. J. (2012). Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transactions of the Royal Society, B, 367, 17851801.CrossRefGoogle ScholarPubMed
Fuentes, A. (2002). Patterns and trends in primate pair bonds. International Journal of Primatology, 23, 953978.Google Scholar
Fuentes, A. (2009). Re-situating anthropological approaches to the evolution of human behavior. Anthropology Today, 25, 1217.Google Scholar
Gallup, G. G., McClure, M. K., Hill, S. D., & Bundy, R. A. (1971). Capacity for self-recognition in differentially reared chimpanzees. The Psychological Record, 21, 6974.Google Scholar
Gibson, K. R. (1986). Cognition, brain size, and the extraction of embedded food resources. In Else, J. G., & Lee, P. C. (Eds.), Primate ontogeny, cognition, and social behaviour (pp. 93103). Cambridge University Press.Google Scholar
Gould, L., & Sauther, M. (2011). Lemuriformes. In Campbell, C. J., Fuentes, A., MacKinnon, K. C., Stumpf, R., & Bearder, S. K. (Eds.), Primates in perspective (2nd ed., pp. 5578). Oxford University Press.Google Scholar
Groves, C., & Napier, J. (2020). Primate. In Encyclopædia Britannica. Retrieved from www.britannica.com/animal/primate-mammal/DietGoogle Scholar
Gursky, S. (2000). Effect of seasonality on the behavior of an insectivorous primate, Tarsius spectrum. International Journal of Primatology, 21, 477495.Google Scholar
Harlow, H. F. (1932). Comparative behavior of primates. III. Complicated delayed reaction tests on primates. Journal of Comparative Psychology, 14, 241252.Google Scholar
Harlow, H. F., Uehling, H., & Maslow, A. H. (1932). Comparative behavior of primates. I. Delayed reaction tests on primates from the lemur to the orang-outan. Journal of Comparative Psychology, 13, 313343.Google Scholar
Harrison, M. E., & Chivers, D. J. (2007). The orang-utan mating system and the unflanged male: A product of increased food stress during the late Miocene and Pliocene? Journal of Human Evolution, 52, 275293.Google Scholar
Hawes, J. E., & Peres, C. A. (2014). Ecological correlates of trophic status and frugivory in neotropical primates. Oikos, 123, 365377.Google Scholar
Hemingway, C. A., & Bynum, N. (2005). The influence of seasonality on primate diet and ranging. In Brockman, D. K., & van Schaik, C. P. (Eds.), Seasonality in primates (pp. 57104). Cambridge University Press.Google Scholar
Henke-von der Marlsburg, J., & Fichtel, C. (2018). Are generalists more innovative than specialists? A comparison of innovative abilities in two wild sympatric mouse lemur species. Royal Society Open Science, 5, 180480.Google Scholar
Herculano-Houzel, S., Mota, B., & Lent, R. (2006). Cellular scaling rules for rodent brains. PNAS, 103, 1213812143.Google Scholar
Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317, 13601366.Google Scholar
Herrmann, E., Hare, B., Call, J., & Tomasello, M. (2010). Differences in the cognitive skills of bonobos and chimpanzees. PLoS ONE, 5, e12438.Google Scholar
Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21, 102110.Google Scholar
Hill, A., Collier-Baker, E., & Suddendorf, T. (2011). Inferential reasoning by exclusion in great apes, esser apes, and spider monkeys. Journal of Comparative Psychology, 125, 91103.Google Scholar
Hill, K. R., Hawkes, K., Hurtado, M. J., & Kaplan, H. (1984). Seasonal variance in the diet of Ache hunter-gatherers in Eastern Paraguay. Human Ecology, 12, 101135.Google Scholar
Hladik, C. M. (1975). Ecology, diet, and social patterning in Old and New World primates. In Tuttle, R. H. (Ed.), Socioecology and psychology of primates (pp. 335). Mouton Publishers.Google Scholar
Holekamp, K. E., Swanson, E. M., & Van Meter, P. E. (2013). Developmental constraints on behavioural flexibility. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20120350.Google Scholar
Hopkins, W. D., Russel, J. L., & Schaeffer, J. (2014). Chimpanzee intelligence is heritable. Current Biology, 24, 16491652.Google Scholar
Hribar, A., Haun, D., & Call, J. (2011). Great apes’ strategies to map spatial relations. Animal Cognition, 14, 511–23.Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G., & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge University Press.Google Scholar
Inoue-Nakamura, N. (1997). Mirror self-recognition in nonhuman primates: A Phylogenetic approach. Japanese Psychological Research, 39, 266275.Google Scholar
Isbell, L. A., & Young, T. P. (2002). Ecological models of female social relationships in primates: Similarities, disparities, and some directions for future clarity. Behaviour, 139, 177202.Google Scholar
Isler, K., Kirk, E. C., & Miller, J. M. A. (2008). Endocranial volumes of primate species: Scaling analysis using a comprehensive and reliable data set. Journal of Human Evolution, 55, 967978.Google Scholar
Isler, K., & van Schaik, C. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57, 392400.Google Scholar
Isler, K., & van Schaik, C. (2014). How humans evolved large brains: Comparative evidence. Evolutionary Anthropology, 23, 6575.Google Scholar
Iwaniuk, A. N., & Nelson, J. E. (2003). Developmental differences are correlated with relative brain size in birds: A comparative analysis. Canadian Journal of Zoology, 81, 19131928.Google Scholar
Janmaat, K. R. L., Boesch, C., Byrne, R., Chapman, C. A., Goné Bi, Z. B., Head, J. S., Robbins, M. M., Wrangham, R. W., & Polansky, L. (2016). Spatio-temporal complexity of chimpanzee food: How cognitive adaptations can counteract the ephemeral nature of ripe fruit. American Journal of Primatology, 78, 626645.Google Scholar
Janmaat, K. R. L., Byrne, R., & Zuberbühler, K. (2006). Primates take weather into account when searching for fruits. Current Biology, 16, 12321237.CrossRefGoogle ScholarPubMed
Janmaat, K. R. L., Polansky, L., Ban, S. D., & Boesch, C. (2014). Wild chimpanzees plan their breakfast time, type, and location. Proceedings of the National Academy of Science, 111, 1634316348.Google Scholar
Janson, C. H. (1985). Aggresive competition and individual food consumption in wild brown capuchin monkeys (Cebus apella). Behavioral Ecology and Sociobiology, 18, 125138.Google Scholar
Janson, C. H., & Goldsmith, M. L. (1995). Predicting group size in primates: Foraging costs and predation risks. Behavioral Ecology, 6, 326336.Google Scholar
Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501506.Google Scholar
Jolly, A. (1985). The evolution of primate behavior: A survey of the primate order traces the progressive development of intelligence as a way of life. American Scientist, 73, 230239.Google Scholar
Joly, M., Micheletta, J., De Marco, A., Langermans, J. A., Sterck, E. H. M., & Waller, B. M. (2017). Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proceedings Biological Sciences, 284, 20162738.Google Scholar
Kano, F., Krupenye, C., Hirata, S., Tomonaga, M., & Call, J. (2019). Great apes use self-experience to anticipate an agent’s action in a false-belief test. Proceedings of the National Academy of Science, 116, 2090420909.Google Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156185.Google Scholar
Kappeler, P. M. (2019). A framework for studying social complexity. Behavioral Ecology and Sociobiology, 73, 14.Google Scholar
Kappeler, P. M., Clutton-Brock, T., Shultz, S., & Lukas, D. (2019). Social complexity: Patterns, processes, and evolution. Behavioural Ecology Sociobiology, 73, 5.CrossRefGoogle Scholar
Kaufman, A. B., Reynolds, M. R., & Kaufman, A. S. (2019). The structure of ape (hominoide) intelligence. Journal of Comparative Psychology, 133, 92105.Google Scholar
Kennedy, E. H., & Fragaszy, D. M. (2008). Analogical reasoning in a capuchin monkey (Cebus apella). Journal of Comparative Psychology, 122, 167175.Google Scholar
Kleiber, M. (1947). Body size and metabolic rate. Physiological Review, 27, 511541.Google Scholar
Koenig, A., Beise, J., Chalise, M. K., & Ganzhorn, J. U. (1998). When females should contest for food – Testing hypotheses about resource density, distribution, size, and quality with Hanuman langurs (Presbytis entellus). Behavioral Ecology and Sociobiology, 42, 225237.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354, 110113.Google Scholar
Kummer, H. (1967). Dimensions of a comparative biology of primate groups. American Journal of Physical Anthropology 27, 357366.Google Scholar
la Cour, L. T., Stone, B. W., Hopkins, W., Menzel, C., & Fragaszy, D. M. (2014). What limits tool use in nonhuman primates? Insights from tufted capuchin monkeys (Sapajus spp.) and chimpanzees (Pan troglodytes) aligning three-dimensional objects to a surface. Animal Cognition, 17, 113125.Google Scholar
Lameira, A. R., & Wich, S. A. (2008). Orangutan long call degradation and individuality over distance: A playback approach. International Journal of Primatology, 29, 615625.Google Scholar
Lancaster, J. B., Kaplan, H. S., Hill, K., & Hurtado, A. M. (2000). The evolution of life history, intelligence and diet among chimpanzees and human foragers. In Tonneau, F., & Thompson, N. S. (Eds.), Perspectives in ethology, volume 13: Evolution, culture, and behavior (pp. 4772). Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Lee, P. C. (1991). Adaptations to environmental change: An evolutionary perspective. In Box, H. O. (Eds.), Primate responses to environmental change (pp. 3956). Springer.Google Scholar
Lee, P. C. (2003). Innovation as a behavioural response to environmental challenges: A cost and benefit approach. In Reader, S. M. (Ed.), Animal innovation (pp. 261276). Oxford University Press.Google Scholar
Lefebvre, L. (2013). Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Frontiers in Human Neuroscience, 7, 245.Google Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior, and Evolution, 63, 233246.Google Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2013). Innovating innovation rate and its relationship with brains, ecology and general intelligence. Brain, Behavior, and Evolution, 81, 143145.Google Scholar
Lefebvre, L., & Sol, D. (2008). Brains, lifestyles and cognition: Are there general trends? Brain, Behavior, and Evolution, 72, 135144.Google Scholar
Lehner, S. R., Burkart, J. M., & van Schaik, C. P. (2011). Can captive orangutans (Pongo pygmaeus abelii) be coaxed into cumulative build-up of techniques? Journal of Comparative Psychology, 125, 446455.CrossRefGoogle ScholarPubMed
Levey, D. J. (1988). Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecological Monographs, 58, 251269.Google Scholar
Lindshield, S. M., & Rodrigues, M. A. (2009). Tool use in wild spider monkeys (Ateles geoffroy). Primates, 50, 269272.Google Scholar
Lott, D. F. (1991). American bison socioecology. Applied Animal Behaviour Science, 29, 135145.Google Scholar
ManyPrimates, Altschul, D. M., Beran, M. J., Bohn, M., Call, J., DeTroy, S., Duguid, S. J., Egelkamp, C.L., Fichtel, C., Fischer, J., Flessert, M., Hanus, D., Haun, D.B.M. Haux, L.M., Hernandez-Aguilar, R., A., Herrmann, E., Hopper, L. M., Joly, M., Kano, F. Keupp, S., … & Watzek, J. (2019). Establishing an infrastructure for collaboration in primate cognition research. PLoS ONE, 14, 19.Google Scholar
MacKinnon, K. C., & Fuentes, A. (2012). Primate social cognition, human evolution, and niche construction: A core context for neuroanthropology. In Lende, D. H., & Downey, G. (Eds.), The encultured brain: An Introduction to neuroanthropology; the encultured brain (pp. 67102). Boston Review.Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Adessi, E., Amici, F., Anderson, R. C., Aureli, F., Baker, J. M., Bania, A. E., Barnard, A. M., Boogert, N. J., Brannon, E. M., Bray, E. E., Bray, J., Brent, L. J. N., Burkart, J. M., Call, J., Cantlon, J. F., Cheke, L. G., … & Zhao, Y. (2014). The evolution of self-control. Proceedings of the National Academy of Science, 111, E2140E2148.Google Scholar
MacPhail, E. M. (1985). Vertebrate intelligence: The null hypothesis. Philosophical Transactions of the Royal Society of London B, 308, 3751.Google Scholar
Makedonska, J., Wright, B. W., & Strait, D. S. (2012). The effect of dietary adaption on cranial morphological integration in Capuchins (Order Primates, Genus Cebus). PLoS ONE, 9, e101378.Google Scholar
Manocha, S. N. (1967). Discrimination learning in langurs and rhesus monkeys. Perceptual and Motor Skills, 24, 805806.Google Scholar
Manrique, H., Völter, C. J., & Call, J. (2013). Repeated innovation in great apes. Animal Behaviour, 85, 195202.CrossRefGoogle Scholar
Maslow, A. H., & Harlow, H. F. (1932). Comparative behavior of primates. II. Delayed reaction tests on primates at Bronx park zoo. Journal of Comparative Psychology, 14, 97107.Google Scholar
McGrew, W. (1992). Chimpanzee material culture: Implications for human evolution. Cambridge University Press.Google Scholar
Melfi, V. A. (2009). There are big gaps in our knowledge, and thus approach, to zoo animal welfare: A case for evidence‐based zoo animal management. Zoo Biology, 28, 574588.Google Scholar
Melin, A. D., Young, H. C., Modossy, K. N., & Fedigan, L. M. (2014). Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. Journal of Human Evolution, 71, 7786.Google Scholar
Mettke-Hofmann, C. (2014). Cognitive ecology: Ecological factors, life-styles, and cognition. WIREs Cognitive Science, 5, 345360.Google Scholar
Mikhalevich, I., Powell, R., & Logan, C. (2017). Is behavioural flexibility evidence of cognitive complexity? How evolution can inform comparative cognition. Interface Focus, 7, 20160121.Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534548.Google Scholar
Moll, H., & Tomasello, M. (2007). Cooperation and human cognition: The Vygotskian intelligence hypothesis. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 362, 639648.Google Scholar
Molnár, P. K., Bitz, C. M., Holland, M. M., Kay, J. E., Penk, S. R., & Amstrup, S. C. (2020). Fasting season length sets temporal limits for global polar bear persistence. Nature Climate Change, 10, 732738.Google Scholar
Mun, J. S. C., Ying, B. X. Y., Jun, J. H. L., Chandran, S., Amzah, A., & Yin, S. O. W. (2014). Comparative diet and nutrition of primates at the Singapore Zoo. Journal of Zoo and Aquarium Research, 2, 5461.Google Scholar
Nekaris, A., & Bearder, S. K. (2011). The lorisiform primates of Asia and mainland Africa: Diversity shrouded in darkness. In Campbell, C. J., Fuentes, A., MacKinnon, K. C., Bearder, S. K., & Stumpf, R. M. (Eds.), Primates in perspective (pp. 3454). Oxford University Press.Google Scholar
Newton, P. (1992). Feeding and ranging patterns of forest Hanuman langurs (Presbytis entellus). International Journal of Primatology, 13, 245285.Google Scholar
Novak, M. (2004). Housing for captive nonhuman primates: The balancing act. In The development of science-based guidelines for laboratory animal care: Proceedings of the November 2003 International Workshop (pp. 7985). National Academies Press.Google Scholar
Osiurak, F., & Reynaud, E. (2020). The elephant in the room: What matters cognitively in cumulative technological culture. Behavioral and Brain Sciences, 43, e156.Google Scholar
Overington, S. E., Cauchard, L., Côté, K. A., & Lefebvre, L. (2011). Innovative foraging behaviour in birds: What characterizes an innovator? Behavioural Processes, 87, 274285.Google Scholar
Pal, A., Kumara, H. N., Mishra, P. S., Velankar, A. D., & Singh, M. (2018). Extractive foraging and tool-aided behaviors in the wild Nicobar long-tailed macaque (Macaca fascicularis umbrosus). Primates, 59, 173183.Google Scholar
Palombit, R. A. (1994). Extra-pair copulations in a monogamous ape. Animal Behaviour, 47, 721723.Google Scholar
Parker, S. T. (1996). Apprenticeship in tool-mediated extractive foraging: The origins of imitations, teaching, and self-awareness in great apes. In Russon, A. E., Bard, K., & Parker, S. T. (Eds.), Reaching into thought: The minds of great apes (pp. 348370). Cambridge University Press.Google Scholar
Parker, S. T., & Gibson, K. R. (1977). Object manipulation, tool use, and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. Journal of Human Evolution, 6, 623641.Google Scholar
Patterson, F. G. P., & Cohn, R. H. (1994). Self-recognition and self-awareness in lowland gorillas. In Parker, S. T., Mitchell, R. W., & Boccia, M. L. (Eds.), Self-awareness in animals and humans: Developmental perspectives (pp. 273290) Cambridge University Press.Google Scholar
Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31, 109130.Google Scholar
Peres, C. A. (1994). Which are the largest New World monkeys? Journal of Human Evolution, 26, 245249.Google Scholar
Pitman, C. A., & Shumaker, R. W. (2009). Does early care affect joint attention in great apes (Pan troglodytes, Pan paniscus, Pongo abelii, Pongo pygmaeus, Gorilla gorilla)? Journal of Comparative Psychology, 123, 334341.Google Scholar
Platt, M. L., Brannon, E. M., Briese, T. L., & French, J. A. (1996). Differences in feeding ecology predict differences in performance between golden lion tamarins (Leontopithecus rosalia) and wied’s marmosets (Callithrix kuhli) on spatial and visual memory tasks. Animal Learning, & Behavior, 24, 384393.Google Scholar
Posada, S., & Colell, M. (2007). Another gorilla (Gorilla gorilla gorilla) recognizes himself in a mirror. American Journal of Primatology, 69, 18.Google Scholar
Potts, R. (2012). Environmental and behavioral evidence pertaining to the evolution of early Homo. Current Anthropology, 53, S299S317.Google Scholar
Povinelli, D. J. (2020). Can comparative psychology crack its toughest nut? Animal Behavior and Cognition, 7, 589652.Google Scholar
Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52, 137154.Google Scholar
Ragir, S. (2000). Diet and food preparation: Rethinking early hominid behavior. Evolutionary Anthropology, 9, 153155.Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences, 99, 44364441.Google Scholar
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society Biology, 366, 10171027.Google Scholar
Řeháková, M. (2019). Successful breeding attempt of a pair of philippine tarsier (Tarsius syrichta) in a conservation center in Bilar, Bohol, Philippines and recommendations for tarsier husbandry. Zoo Biology, 38, 516521.Google Scholar
Reichard, U. H., & Barelli, C. (2008). Life history and reproductive strategies of khao yai hylobates lar: Implications for social evolution in apes. International Journal of Primatology, 29, 823844.Google Scholar
Ricklefs, R. E., & Wikelski, M. (2002). The physiology/life-history nexus. Trends in Ecology, & Evolution, 17, P462–468.Google Scholar
Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Science, 21, P691–702.Google Scholar
Rosati, A. G., Herrmann, E., Kaminski, J., Krupenye, C., Melis, A. P., Schroepfer, K., … & Hare, B. (2013). Assessing the psychological health of captive and wild apes: A response to Ferdowsian et al. (2011). Journal of Comparative Psychology, 127, 329336.Google Scholar
Rosati, A. G., Rodriguez, K., & Hare, B. (2014). The ecology of spatial memory in four lemur species. Animal Cognition, 17, 947–61.Google Scholar
Rosenberger, A. L. (1992). Evolution of feeding niches in New World monkeys. American Journal of Physical Anthropology, 88, 525562.Google Scholar
Rudolph, K., & Fichtel, C. (2017). Inhibitory control in douc langurs (Pygathrix nemaeus and P. cinerea). Vietnamese Journal of Primatology, 2, 7381.Google Scholar
Rumbaugh, D. M., & Pate, J. L. (1984). The evolution of cognition in primates: A comparative perspective. In Roitblat, L., Bever, T.G., & Terrace, S. (Eds.), Animal cognition (pp. 569587). Lawrence Erlbaum Associates.Google Scholar
Sánchez-Amaro, A., Tan, J., Kaufhold, S. P., & Rossano, F. (2020). Gibbons exploit information about what a competitor can see. Animal Cognition, 23, 289299.Google Scholar
Santos, L. R., Miller, C. T., & Hauser, M. D. (2003). Representing tools: How two non-human primate species distinguish between the functionally relevant and irrelevant features of a tool. Animal Cognition, 6, 269281.Google Scholar
Santos, L. R., Pearson, H. M., Spaepen, G. M., Tsao, F., & Hauser, M. D. (2006). Probing the limits of tool competence: Experiments with two non-tool-using species (Cercopithecus aethiops and Saguinus oedipus). Animal Cognition, 9, 94109.Google Scholar
Sayers, K. (2013). On folivory, competition, and intelligence: Generalisms, overgeneralizations, and models of primate evolution. Primates, 54, 111124.Google Scholar
Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology, & Evolution, 16, 372380.Google Scholar
Schmitt, V., Pankau, B., & Fischer, J. (2012). Old World monkeys compare to apes in the primate cognition test battery. PLoS ONE, 7, e32024.Google Scholar
Schubiger, M. N., Fichtel, C., & Burkart, J. M. (2020). Validity of cognitive tests for non-human animals: Pitfalls and prospects. Frontiers in Psychology, 11, 1835.Google Scholar
Schubiger, M. N., Wüstholz, F. L., Wunder, A., & Burkart, J. M. (2015). High emotional reactivity toward an experimenter affects participation, but not performance, in cognitive tests with common marmosets (callithrix jacchus). Animal Cognition, 18, 701712.Google Scholar
Selig, K. R., López-Torres, S., Hartstone-Rose, A., Nash, L. T., Burrows, A. M., & Silcox, M. T. (2019). A novel method for assessing enamel thickness distribution in the anterior dentition as a signal for gouging and other extractive foraging behaviors in gummivorous mammals. Folia Primatologica, 91, 365384.Google Scholar
Shipley, L. A., Forbey, J. S., & Moore, B. D. (2009). Revisiting the dietary niche: When is a mammalian herbivore a specialist? Integrative and Comparative Biology, 49, 274290.Google Scholar
Shultz, S., & Dunbar, R. I. (2007). The evolution of the social brain: Anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society Biology, 274, 24292436.Google Scholar
Smith, J. D., Berg, M. E., Cook, R. G., Murphy, M. S., Crossley, M. J., Boomer, J., Spiering, B., Beran, M. J., Church, B. A., Ashby, F. G., & Grace, R. C. (2012). Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Reviews, 36, 23552369.Google Scholar
Smith, J. D., Flemming, T. M., Boomer, J., Beran, M. J., & Church, B. A. (2013). Fading perceptual resemblance: A path for rhesus macaques (Macaca mulatta) to conceptual matching? Cognition, 129, 598614.Google Scholar
Snaith, T. V., & Chapman, C. A. (2007). Primate group size and interpreting socioecological models: Do folivores really play by different rules? Evolutionary Anthropology, 16, 94106.Google Scholar
Sol, D. (2009). Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biology Letters, 5, 130133.Google Scholar
Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. The American Naturalist, 172, S63S71.Google Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefevbre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences, 102, 54605465.Google Scholar
Sol, D., Szekely, T., Liker, A., & Lefebvre, L. (2007). Big-brained birds survive better in nature. Proceedings of the Royal Society Biology, 274, 763769.Google Scholar
Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press.Google Scholar
Sterek, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41, 291309.Google Scholar
Sterling, E. J., & Povinelli, D. J. (1999). Tool use, aye-ayes, and sensorimotor intelligence. Folia Primatologica, 70, 816.Google Scholar
Stevens, J. R., Rosati, A. G., Ross, K. R., & Hauser, M. D. (2005). Will travel for food: Spatial discounting in two New World monkeys. Current Biology, 15, 18551860.Google Scholar
Stevenson, R. J., & Prescott, J. (2014). Human diet and cognition. WIREs Cognitive Science, 5, 463475.Google Scholar
Sukhum, K. V., Freiler, M. K, Wang, R., & Carlson, B. A. (2016). The costs of a big brain: Extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes. Proceedings of the Royal Society Biology, 283, 20162157.Google Scholar
Swedell, L. (2012). Primate sociality and social systems. Nature Education Knowledge, 3, 84.Google Scholar
Takahashi, M. Q., Rothman, J. M., Raubenheimer, D., & Cords, M. (2019). Dietary generalists and nutritional specialists: Feeding strategies of adult female blue monkeys (Cercopithecus mitis) in the Kakamega Forest, Kenya. American Journal of Primatology, 81, e23016.Google Scholar
Tan, J., Tao, R., & Su, Y. (2014). Testing the cognition of the forgotten colobines: A first look at Golden Snub-Nosed monkeys (Rhinopithecus roxellana). International Journal of Primatology, 35, 376393.Google Scholar
Tennie, C., Bandini, E., van Schaik, C. P., & Hopper, L. M. (2020a). The zone of latent solutions and its relevance to understanding ape cultures. Biology, & Philosophy. 35(5), 55Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 24052415.Google Scholar
Tennie, C., Hopper, L. M., & van Schaik, C. (2020b). On the origin of cumulative culture: Consideration of the role of copying in culture-dependent traits and a reappraisal of the zone of latent solutions hypothesis. In Hopper, L. M., & Ross, S. R. (Eds.), Chimpanzees in context. University of Chicago Press.Google Scholar
Tennie, C., & Over, H. (2012). Cultural intelligence is key to explaining human tool use. Behavioral and Brain Sciences, 35, 242243.Google Scholar
Terborgh, J. (1983). Five New World primates: A study in comparative ecology. Princeton University Press.Google Scholar
Teschke, I., Wascher, C. A. F., Scriba, M. F., von Bayern, A. M. P., Huml, V., Siemers, B., & Tebbich, S. (2013). Did tool-use evolve with enhanced physical cognitive abilities? Philosophical Transactions of the Royal Society Biology, 368, 20120418.Google Scholar
Thompson, R. K. R., & Oden, D. L. (2000). Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cognitive Science, 24, 363396.Google Scholar
Tomasello, M., & Call, J. (1997). Primate cognition. Oxford University Press.Google Scholar
Trapanese, C., Robira, B., Tonachella, G., di Gristina, S., Meunier, H., & Masi, S. (2019). Where and what? Frugivory is associated with more efficient foraging in three semi-free ranging primate species. Royal Society Open Science, 6, 181722.CrossRefGoogle ScholarPubMed
Vaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35, 203262.Google Scholar
van Adrichem, G. G. J., Utami, S. S., Wich, S. A., van Hooff, J. A. R. A. M., & Sterck, E. H. M. (2006). The development of wild immature sumatran orangutans (Pongo abelii) at Ketambe. Primates, 47, 300309.Google Scholar
van Schaik, C. P., & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society Biology, 366, 10081016.Google Scholar
van Schaik, C., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36, 719741.Google Scholar
van Schaik, C., Fox, E., & Sitompul, A. F. (1996). Manufacture and use of tools in wild Sumatran orangutans: Implications for human evolution. Naturwissenschaften, 83, 186188.Google Scholar
van Woerden, J. T., van Schaik, C. P., & Isler, K. (2014). Brief communication: Seasonality of diet composition is related to brain size in New World monkeys. American Journal of Physical Anthropology, 154, 628632.Google Scholar
Vlamings, P. H. J. M., Hare, B., & Call, J. (2010). Reaching around barriers: The performance of the great apes and 3–5-year-old children. Animal Cognition, 13, 273285.Google Scholar
Vlamings, P. H. J. M., Uher, J., & Call, J. (2006). How the great apes (pan troglodytes, pongo pygmaeus, pan paniscus, and gorilla gorilla) perform on the reversed contingency task: The effects of food quantity and food visibility. Journal of Experimental Psychology: Animal Behavior Processes, 32, 6070.Google Scholar
Völter, C. J., Tinklenberg, B., Call, J., & Seed, A. M. (2018). Comparative psychometrics: Establishing what differs is central to understanding what evolves. Philosophical Transactions B, 373, 20170283.Google Scholar
Vonk, J. (2003). Gorilla (Gorilla gorilla gorilla) and Orangutan (Pongo abelii) understanding of first and second order relations. Animal Cognition, 6, 7786.Google Scholar
Vonk, J. (2022). What laboratory and field approaches bring to bear for understanding the evolution of ursid cognition. In Papini, M., Krause, M., & Hollis, K. (Eds), The Evolution of learning and memory mechanisms (pp. 359374). Cambridge University Press.Google Scholar
Vonk, J., & Aradhye, C. (2015). Evolution of cognition. In Muehlenbein, M. (Ed.), Basics in human evolution (pp. 479488). Elsevier.Google Scholar
Vonk, J., Edge, J., Pappas, J., Robeson, A., & Jordan, A. (2020). Cross species comparisons: When comparing apples to oranges is fruitful. In Shackelford, Todd K. (Ed.), The Sage Handbook of evolutionary psychology (pp. 285310). Sage.Google Scholar
Vonk, J., & Leete, J. (2017). Carnivore concepts: Categorization in carnivores “bears” further study. International Journal of Comparative Psychology, 30, article 32707.Google Scholar
Vonk, J., McGuire, M., & Johnson-Ulrich, Z. (2015). The evolution of social cognition. In Zeigler-Hill, V., Welling, L., & Shackelford, T. K. (Eds.), Evolutionary Perspectives on Social Psychology (pp. 8196). Springer.Google Scholar
Vonk, J., & Povinelli, D. (2011). Individual differences in long-term cognitive testing in a group of captive chimpanzees. International Journal of Comparative Psychology, 24, 137167.Google Scholar
Vonk, J., Vincent, J., & O’Connor, V. (2021). It’s hard to be social alone: Cognitive complexity as transfer within and across domains. Comparative Cognition & Behavior Reviews, 16.Google Scholar
Walker, R., Burger, O., Wagner, J., & Von Rueden, C. R. (2006). Evolution of brain size and juvenile periods in primates. Journal of Human Evolution, 51, 480489.Google Scholar
Whiten, A., & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11, 233273.Google Scholar
Wobber, V., Hare, B., Maboto, J., Lipson, S., Wrangham, R., & Ellison, P. T. (2010). Differential changes in steroid hormones before competition in bonobos and chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 107, 1245712462.Google Scholar
Worthy, G. A. J., & Hickie, J. P. (1986). Relative brain size in marine mammals. The American Naturalist, 128, 445459.Google Scholar
Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L., & Russello, M. A. (2010). Behavioral flexibility and species invasions: The adaptive flexibility hypothesis. Ethology, Ecology, & Evolution, 22, 393404.Google Scholar
Yamakoshi, G. (1998). Dietary responses to fruit scarcity of wild chimpanzees at Bossou, Guinea: Possible implications for ecological importance of tool use. American Journal of Physical Anthropology, 106, 283295.Google Scholar
Yamakoshi, G. (2001). Ecology of tool use in wild chimpanzees: Toward reconstruction of early hominid evolution. In Matsuzawa, T. (Ed.), Primate origins of human cognition and behavior (pp. 537556). Springer Verlag.Google Scholar
Yamamoto, M. E., Araujo, A., Arruda, M. d. F., Lima, A. K. M., Siqueira, J. D. O., & Hattori, W. T. (2014). Male and female breeding strategies in a cooperative primate. Behavioural Processes, 109, 2733.Google Scholar
Yamamoto, S. (2016). Primate empathy: Three factors and their combinations for empathy-related phenomena. Wiley Interdisciplinary Reviews: Cognitive Science, 8, e1431.Google Scholar