Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-15T16:37:38.191Z Has data issue: false hasContentIssue false

6 - Current Perspectives on Primate Perception

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

This chapter reviews current topics within the subfield of perception with an emphasis on nonhuman primates. We review the psychophysical approach to the study of perception and misperception, including its application to the study of visual illusions and perceptual completion. Geometric illusions emerge when a target stimulus is embedded in an illusory-inducing context and include size illusions such as the Ebbinghaus–Titchener and Delboeuf illusions as well as line-length illusions such as the Ponzo illusion and Müller–Lyer illusion. We review differential perception of these illusions by primates and other species to understand better the role of perceptual processing mode and experimental design in the emergence of illusory experiences. Additionally, perceptual completion has contributed to our knowledge of the mechanisms underlying primate perception and includes studies on amodal completion and illusory contours. Current topics concerning these areas of research are emphasized, such as grouping mechanisms and other mechanisms of perceptual processing.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrillo, C., Beran, M. J., & Parrish, A. E. (2019). Exploring the Jastrow illusion in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Sapajus apella). Perception, 48, 367385.Google Scholar
Agrillo, C., Gori, S., & Beran, M. J. (2015). Do rhesus monkeys (Macaca mulatta) perceive illusory motion? Animal Cognition, 18, 895910.Google Scholar
Agrillo, C., Parrish, A. E., & Beran, M. J. (2014). Do rhesus monkeys (Macaca mulatta) perceive the Zöllner illusion? Psychonomic Bulletin & Review, 21, 986994.Google Scholar
Agrillo, C., Santacà, M., Pecunioso, A., & Petrazzini, M. E. M. (2020). Everything is subjective under water surface, too: Visual illusions in fish. Animal Cognition, 23, 251264.Google Scholar
Benhar, E., & Samuel, D. (1982). Visual illusions in the baboon (Papio anubis). Animal Learning & Behavior, 10, 115118.Google Scholar
Berry, J. W. (1971). Mueller–Lyer susceptibility: Culture, ecology, and race? International Journal of Psychology, 6, 193197.Google Scholar
Bravo, M., Blake, R., & Morrison, S. (1988). Cats see subjective contours. Vision Research, 28, 861865.CrossRefGoogle ScholarPubMed
Brock, J. O. N., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14, 209224.Google Scholar
Byosiere, S. E., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2019). Illusory contour perception in domestic dogs. Psychonomic Bulletin & Review, 26, 16411649.Google Scholar
Byosiere, S. E., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2020). Illusion susceptibility in domestic dogs. Ethology, 126, 949965.CrossRefGoogle Scholar
Byosiere, S. E., Feng, L. C., Woodhead, J. K., Rutter, N. J., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017). Visual perception in domestic dogs: Susceptibility to the Ebbinghaus–Titchener and Delboeuf illusions. Animal Cognition, 20, 435448.Google Scholar
Cappellato, A., Miletto Petrazzini, M. E., Bisazza, A., Dadda, M., & Agrillo, C. (2020). Susceptibility to size visual illusions in a non-primate mammal (Equus caballus). Animals, 10, 1673.Google Scholar
Cavoto, K. K., & Cook, R. G. (2001). Cognitive precedence for local information in hierarchical stimulus processing by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 27, 316.Google Scholar
Choplin, J. M., & Medin, D. L. (1999). Similarity of the perimeters in the Ebbinghaus illusion. Perception & Psychophysics, 61, 312.Google Scholar
Conway, B. R., Kitaoka, A., Yazdanbakhsh, A., Pack, C. C., & Livingstone, M. S. (2005). Neural basis for a powerful static motion illusion. Journal of Neuroscience, 25, 56515656.Google Scholar
Coren, S., & Enns, J. T. (1993). Size contrast as a function of conceptual similarity between test and inducers. Perception & Psychophysics, 54, 579588.Google Scholar
Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48, 497507.Google Scholar
de Fockert, J., Davidoff, J., Fagot, J., Parron, C., & Goldstein, J. (2007). More accurate size contrast judgments in the Ebbinghaus illusion by a remote culture. Journal of Experimental Psychology: Human Perception and Performance, 33, 738742.Google Scholar
De Lillo, C., Spinozzi, G., Truppa, V., & Naylor, D. M. (2005). A comparative analysis of global and local processing of hierarchical visual stimuli in young children (Homo sapiens) and monkeys (Cebus apella). Journal of Comparative Psychology, 119, 155165.Google Scholar
De Valois, R. L., & Jacobs, G. H. (1968). Primate color vision. Science, 16, 533540.Google Scholar
De Weerd, P., Desimone, R., & Ungerleider, L. G. (1996). Cue-dependentdeficits in grating orientation discrimination after V4 lesions in macaques. Visual Neuroscience, 13, 529538.Google Scholar
Deruelle, C., Barbet, I., Dépy, D., & Fagot, J. (2000). Perception of partly occluded figures by baboons (Papio papio). Perception, 29, 14831497.Google Scholar
Deruelle, C., & Fagot, J. (1997). Hemispheric lateralisation and global precedence effects in the processing of visual stimuli by humans and baboons (Papio papio). Laterality: Asymmetries of Body, Brain and Cognition, 2, 233246.Google Scholar
Deruelle, C., & Fagot, J. (1998). Visual search for global/local stimulus features in humans and baboons. Psychonomic Bulletin & Review, 5, 476481.Google Scholar
Fagot, J., Barbet, I., Parron, C., & Deruelle, C. (2006). Amodal completion by baboons (Papio papio): Contribution of background depth cues. Primates, 47, 145150.Google Scholar
Fagot, J., & Deruelle, C. (1997). Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). Journal of Experimental Psychology: Human Perception and Performance, 23, 429442.Google Scholar
Fagot, J., & Tomonaga, M. (1999). Global and local processing in humans (Homo sapiens) and chimpanzees (Pan troglodytes): Use of a visual search task with compound stimuli. Journal of Comparative Psychology, 113, 312.Google Scholar
Fagot, J., & Tomonaga, M. (2001). Effects of element separation on perceptual grouping by humans (Homo sapiens) and chimpanzees (Pan troglodytes): Perception of Kanizsa illusory figures. Animal Cognition, 4, 171177.Google Scholar
Fagot, J., Tomonaga, M., & Deruelle, C. (2001). Processing of the global and local dimensions of visual hierarchical stimuli by humans (Homo sapiens), chimpanzees (Pan troglodytes), and baboons (Papio papio). In Matsuzawa, T. (Ed.), Primate origins of human cognition and behavior (pp. 87103). Springer.Google Scholar
Feng, L. C., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017). Why do animals differ in their susceptibility to geometrical illusions? Psychonomic Bulletin & Review, 24, 262276.Google Scholar
Fobes, J. L., & King, J. E. (1982). Vision: The dominant primate modality. In Fobes, J. L. & King, J. E. (Eds.), Primate behavior (pp. 219243). Academic Press.Google Scholar
Fraser, A., & Wilcox, K. J. (1979). Perception of illusory movement. Nature, 281, 565566.Google Scholar
Fujita, K. (1997). Perception of the Ponzo illusion by rhesus monkeys, chimpanzees, and humans: Similarity and difference in the three primate species. Perception & Psychophysics, 59, 284292.CrossRefGoogle ScholarPubMed
Fujita, K. (2001a). What you see is different from what I see: Species differences in visual perception. In Matsuzawa, T. (Ed.), Primate origins of human cognition and behavior (pp. 2954). Springer-Verlag.Google Scholar
Fujita, K. (2001b). Perceptual completion in rhesus monkeys (Macaca mulatta) and pigeons (Columba livia). Perception & Psychophysics, 63, 115125.Google Scholar
Fujita, K. (2012). Seeing what is not there: Illusion, completion, and spatiotemporal boundary formation in comparative perspective. In Zentall, T. R. & Wasserman, E. A. (Eds.), The Oxford handbook of comparative cognition (pp. 2547). Oxford University Press.Google Scholar
Fujita, K., Blough, D. S., & Blough, P. M. (1991). Pigeons see the Ponzo illusion. Animal Learning & Behavior, 19, 283293.Google Scholar
Fujita, K., & Giersch, A. (2005). What perceptual rules do capuchin monkeys (Cebus apella) follow in completing partly occluded figures? Journal of Experimental Psychology: Animal Behavior Processes, 31, 387398.Google Scholar
Fujita, K., & Matsuzawa, T. (1990). Delayed figure reconstruction by a chimpanzee (Pan troglodytes) and humans (Homo sapiens). Journal of Comparative Psychology, 104, 345351.Google Scholar
Fujita, K., & Ushitani, T. (2005). Better living by not completing: A wonderful peculiarity of pigeon vision? Behavioural Processes, 69, 5966.Google Scholar
Fuss, T., Bleckmann, H., & Schluessel, V. (2014). Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). Zoology, 117, 104111.Google Scholar
Fuss, T., & Schluessel, V. (2017). The Ebbinghaus illusion in the gray bamboo shark (Chiloscyllium griseum) in comparison to the teleost damselfish (Chromis chromis). Zoology, 123, 1629.Google Scholar
Gori, S., & Hamburger, K. (2006). A new motion illusion: The Rotating-Tilted-Lines illusion. Perception, 35, 853857.Google Scholar
Gori, S., Giora, E., & Stubbs, D. A. (2010). Perceptual compromise between apparent and veridical motion indices: The Unchained-Dots illusion. Perception, 39, 863866.Google Scholar
Gori, S., Giora, E., Yazdanbakhsh, A., & Mingolla, E. (2011). A new motion illusion based on competition between two kinds of motion processing units: The Accordion Grating. Neural Networks, 24, 10821092.Google Scholar
Goto, T., Uchiyama, I., Imai, A., Takahashi, S. Y., Hanari, T., Nakamura, S., & Kobari, H. (2007). Assimilation and contrast in optical illusions. Japanese Psychological Research, 49, 3344.Google Scholar
Happé, F., Briskman, J., & Frith, U. (2001). Exploring the cognitive phenotype of autism: Weak “central coherence” in parents and siblings of children with autism: Experimental tests. Journal of Child Psychology and Psychiatry, 42, 299307.Google Scholar
Hopkins, W. D., & Washburn, D. A. (2002). Matching visual stimuli on the basis of global and local features by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). Animal Cognition, 5, 2731.Google Scholar
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.Google Scholar
Kanizsa, G. (1974). Contours without gradients or cognitive contours? Giornale Italiano di Psicologia, 1, 93113.Google Scholar
Kanizsa, G., Renzi, P., Conte, S., Compostela, C., & Guerani, L. (1993). Amodal completion in mouse vision. Perception, 22, 713721.Google Scholar
Keep, B., Zulch, H. E., & Wilkinson, A. (2018). Truth is in the eye of the beholder: Perception of the Müller–Lyer illusion in dogs. Learning & Behavior, 46, 501512.Google Scholar
Kelley, L. A., & Kelley, J. L. (2014). Animal visual illusion and confusion: The importance of a perceptual perspective. Behavioral Ecology, 25, 450463.Google Scholar
Kitaoka, A., & Ashida, H. (2003). Phenomenal characteristics of the peripheral drift illusion. Vision, 15, 261262.Google Scholar
Lazareva, O. F., Shimizu, T., & Wasserman, E. A. (2012). How animals see the world: Comparative behavior, biology, and evolution of vision. Oxford University Press.Google Scholar
Lea, S. E., Slater, A. M., & Ryan, C. M. (1996). Perception of object unity in chicks: A comparison with the human infant. Infant Behavior and Development, 19, 501504.Google Scholar
Lin, I., & Chiao, C. C. (2017). Visual equivalence and amodal completion in cuttlefish. Frontiers in Physiology, 8, 40.Google Scholar
Lucon-Xiccato, T., Santacà, M., Petrazzini, M. E. M., Agrillo, C., & Dadda, M. (2019). Guppies, Poecilia reticulata, perceive a reversed Delboeuf illusion. Animal Cognition, 22, 291303.Google Scholar
Mackay, D. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature, 181, 507508.Google Scholar
Matsuno, T., & Fujita, K. (2009). A comparative psychophysical approach to visual perception in primates. Primates, 50, 121130.Google Scholar
Matsuno, T., & Tomonaga, M. (2007). Global and local visual processing by chimpanzees (Pan troglodytes). Japanese Journal of Psychological Science, 25, 281282.Google Scholar
Michotte, A. (1963). The perception of causality. Trans. T. R. and E. Miles. Basic Books.Google Scholar
Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16, 77337741.Google Scholar
Nagasaka, Y., & Osada, Y. (2000). Subjective contours, amodal completion, and transparency in animals. Japanese Journal of Animal Psychology, 50, 6173.Google Scholar
Nakamura, N., Fujita, K., Ushitani, T., & Miyata, H. (2006). Perception of the standard and the reversed Müller–Lyer figures in pigeons (Columba livia) and humans (Homo sapiens). Journal of Comparative Psychology, 120, 252261.Google Scholar
Nakamura, N., Watanabe, S., & Fujita, K. (2008). Pigeons perceive the Ebbinghaus–Titchener circles as an assimilation illusion. Journal of Experimental Psychology: Animal Behavior Processes, 34, 375387.Google Scholar
Nakamura, N., Watanabe, S., & Fujita, K. (2009). Further analysis of perception of reversed Müller–Lyer figures for pigeons (Columba livia). Perceptual and Motor Skills, 108, 239250.CrossRefGoogle ScholarPubMed
Nakamura, N., Watanabe, S., & Fujita, K. (2014). A reversed Ebbinghaus–Titchener illusion in bantams (Gallus gallus domesticus). Animal Cognition, 17, 471481.Google Scholar
Nanay, B. (2018). The importance of amodal completion in everyday perception. i-Perception, 9, 2041669518788887.Google Scholar
Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353383.Google Scholar
Navon, D. (1981). The forest revisited: More on global precedence. Psychological Research, 43, 132.Google Scholar
Neiworth, J. J., Gleichman, A. J., Olinick, A. S., & Lamp, K. E. (2006). Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus). Journal of Comparative Psychology, 120, 323330.Google Scholar
Nieder, A., & Wagner, H. (1999). Perception and neuronal coding of subjective contours in the owl. Nature Neuroscience, 2, 660663.Google Scholar
Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370(6487), 256257.Google Scholar
Pan, Y., Chen, M., Yin, J., An, X., Zhang, X., Lu, Y., et al. (2012). Equivalent representation of real and illusory contours in macaque V4. Journal of Neuroscience, 32, 67606770.Google Scholar
Parrish, A. E., & Beran, M. J. (2014). When less is more: Like humans, chimpanzees (Pan troglodytes) misperceive food amounts based on plate size. Animal Cognition, 17, 427434.Google Scholar
Parrish, A. E., Brosnan, S. F., & Beran, M. J. (2015). Do you see what I see? A comparative investigation of the Delboeuf illusion in humans (Homo sapiens), rhesus monkeys (Macaca mulatta), and capuchin monkeys (Cebus apella). Journal of Experimental Psychology: Animal Learning and Cognition, 41, 395405.Google Scholar
Parron, C., & Fagot, J. (2007). Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with the Ebbinghaus illusion. Journal of Comparative Psychology, 121, 405411.Google Scholar
Pepperberg, I. M., Vicinay, J., & Cavanagh, P. (2008). Processing of the Müller–Lyer illusion by a Grey parrot (Psittacus erithacus). Perception, 37, 765781.Google Scholar
Petter, G. (1956). Nuove ricerche sperimentali sulla totalizzazione percettiva. Rivista di Psicologia, 50, 213217.Google Scholar
Qadri, M. A., & Cook, R. G. (2019). Perception of Ebbinghaus–Titchener stimuli in starlings (Sturnus vulgaris). Animal Cognition, 22, 973989.Google Scholar
Regolin, L., Marconato, F., & Vallortigara, G. (2004). Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus). Animal Cognition, 7, 162170.Google Scholar
Rizzo, M., Nawrot, M., Sparks, J., & Dawson, J. (2008). First and second-order motion perception after focal human brain lesions. Vision Research, 48, 26822688.Google Scholar
Robinson, J. O. (1972). The psychology of visual illusions. Hutchinson.Google Scholar
Roitblat, H. L. (1987). Introduction to comparative cognition. Freeman.Google Scholar
Sakiyama, T., & Gunji, Y. P. (2013). The Müller–Lyer illusion in ant foraging. PloS one, 8, e81714.Google Scholar
Santacà, M., & Agrillo, C. (2020). Perception of the Müller–Lyer illusion in guppies. Current Zoology, 66, 205213.Google Scholar
Santacà, M., Miletto Petrazzini, M. E., Agrillo, C., & Wilkinson, A. (2019). Can reptiles perceive visual illusions? Delboeuf illusion in red-footed tortoise (Chelonoidis carbonaria) and bearded dragon (Pogona vitticeps). Journal of Comparative Psychology, 133, 419427.CrossRefGoogle ScholarPubMed
Santacà, M., Regaiolli, B., Miletto Petrazzini, M. E., Spiezio, C., & Agrillo, C. (2017). Preliminary study to investigate the Delboeuf illusion in ring-tailed lemurs (Lemur catta): Methodological challenges. Animal Behavior and Cognition, 4, 365377.Google Scholar
Sato, A., Kanazawa, S., & Fujita, K. (1997). Perception of object unity in a chimpanzee (Pan troglodytes). Japanese Psychological Research, 39, 191199.Google Scholar
Sovrano, V. A., & Bisazza, A. (2009). Perception of subjective contours in fish. Perception, 38, 579590.Google Scholar
Sovrano, V. A., Da Pos, O., & Albertazzi, L. (2016). The Müller–Lyer illusion in the teleost fish Xenotoca eiseni. Animal Cognition, 19, 123132.Google Scholar
Spillmann, L. (2013). The Ōuchi–Spillmann illusion revisited. Perception, 42, 413429.Google Scholar
Spinozzi, G., De Lillo, C., & Salvi, V. (2006). Local advantage in the visual processing of hierarchical stimuli following manipulations of stimulus size and element numerosity in monkeys (Cebus apella). Behavioural Brain Research, 166, 4554.Google Scholar
Spinozzi, G., De Lillo, C., & Truppa, V. (2003). Global and local processing of hierarchical visual stimuli in tufted capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 117, 1523.Google Scholar
Strier, K. B. (2015). Primate behavioral ecology. Routledge.Google Scholar
Subramaniyan, M., Ecker, A. S., Berens, P., & Tolias, A. S. (2013). Macaque monkeys perceive the flash lag illusion. PloS One, 8, e58788.Google Scholar
Suganuma, E., Pessoa, V. F., Monge-Fuentes, V., Castro, B. M., & Tavares, M. C. H. (2007). Perception of the Müller–Lyer illusion in capuchin monkeys (Cebus apella). Behavioural Brain Research, 182, 6772.Google Scholar
Sugita, Y. (1999). Grouping of image fragments in primary visual cortex. Nature, 401, 269272.Google Scholar
Sussman, R. W. (1999). Primate ecology and social structure. Pearson Custom Publishing.Google Scholar
Szenczi, P., Velázquez-López, Z. I., Urrutia, A., Hudson, R., & Bánszegi, O. (2019). Perception of the Delboeuf illusion by the adult domestic cat (Felis silvestris catus) in comparison with other mammals. Journal of Comparative Psychology, 133, 223232.Google Scholar
Tanaka, H. K., & Fujita, I. (2000). Global and local processing of visual patterns in macaque monkeys. Neuroreport, 11, 28812884.Google Scholar
Tanaka, H. K., Onoe, H., Tsukada, H., & Fujita, I. (2001). Attentional modulation of neural activity in the macaque inferior temporal cortex during global and local processing. Neuroscience Research, 39, 469472.Google Scholar
Tomonaga, M. (2015). Fat face Illusion, or Jastrow illusion with faces, in humans but not in chimpanzees. i-Perception, 6.Google Scholar
Tomonaga, M., & Matsuzawa, T. (1992). Perception of complex geometric figures in chimpanzees (Pan troglodytes) and humans (Homo sapiens): Analyses of visual similarity on the basis of choice reaction time. Journal of Comparative Psychology, 106, 4352.Google Scholar
Tudusciuc, O., & Nieder, A. (2010). Comparison of length judgments and the Müller–Lyer illusion in monkeys and humans. Experimental Brain Research, 207, 221231.Google Scholar
Ushitani, T., Fujita, K., & Yamanaka, R. (2001). Do pigeons (Columba livia) perceive object unity? Animal Cognition, 4, 153161.Google Scholar
Von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science, 224, 12601262.Google Scholar
Warden, C. J., & Baar, J. (1929). The Müller–Lyer illusion in the ring dove, Turtur risorius. Journal of Comparative Psychology, 9, 275292.Google Scholar
Watanabe, S., & Furuya, I. (1997). Video display for study of avian visual cognition: From psychophysics to sign language. International Journal of Comparative Psychology, 10, 111127.Google Scholar
Watanabe, S., Nakamura, N., & Fujita, K. (2011). Pigeons perceive a reversed Zöllner illusion. Cognition, 119, 137141.Google Scholar
Watanabe, S., Nakamura, N., & Fujita, K. (2013). Bantams (Gallus gallus domesticus) also perceive a reversed Zöllner illusion. Animal Cognition, 16, 109115.CrossRefGoogle ScholarPubMed
Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nature Neuroscience, 1, 656657.Google Scholar
Witkin, H. A. (1967). A cognitive-style approach to cross-cultural research. International Journal of Psychology, 2, 233250.Google Scholar
Zimmermann, R. R. (1962). Form generalization in the infant monkey. Journal of Comparative and Physiological Psychology, 55, 918923.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×