Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-30T21:48:48.601Z Has data issue: false hasContentIssue false

40 - Genetics of parkinsonism

from Part VII - Parkinson's and related movement disorders

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Thomas Gasser
Affiliation:
Department of Neurodegenerative Disorders, Hertie-Institute for Clinical Brain Research Center of Neurology, University of Tübingen, Germany, thomas.gasser@med.uni-tuebingen.de
Get access

Summary

Overview

Over the last few years, several genes for monogenically inherited forms of Parkinson's disease have been mapped and/or cloned. In a small number of families with autosomal dominant inheritance and typical Lewy body pathology, mutations have been identified in the gene for α-synuclein. Aggregation of this protein in Lewy bodies may be a crucial step in the molecular pathogenesis of familial and sporadic PD. On the other hand, mutations in the parkin gene cause autosomal recessive parkinsonism of early onset. In this form of PD, nigral degeneration is not accompanied by Lewy body formation. Parkin mutations appear to be a common cause of PD in patients with very early onset. Parkin has been implicated in the cellular protein degradation pathways, as it has been shown that it functions as a ubiquitin ligase. This potential importance of this pathway is also highlighted by the finding of a mutation in the gene for ubiquitin C-terminal hydrolase L1 in another small family with PD. The most recently identified PD-genes are DJ-1 and PINK1, again in families with autosomal-recessive inheritance and early onset. Other loci have been mapped to chromosome 2p and 12p, respectively, in a small number of families with dominantly inherited PD, but those genes have not yet been identified. These findings prove that there are several genetically distinct forms of PD that can be caused by mutations in single genes.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 586 - 597
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeliovich, A., Schmitz, Y., Farinas, I.et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–52CrossRefGoogle ScholarPubMed
Agundez, J. A., Jimenez-Jimenez, F. J., Luengo, A.et al. (1998). Slow allotypic variants of the NAT2 gene and susceptibility to early-onset Parkinson's disease. Neurology, 51, 1587–92CrossRefGoogle ScholarPubMed
Akhmedova, S. N., Yakimovsky, A. K. & Schwartz, E. I. (2001). Paraoxonase 1 Met – Leu 54 polymorphism is associated with Parkinson's disease. J. Neurol. Sci. 184, 179–82CrossRefGoogle ScholarPubMed
Armstrong, M., Daly,, A. K., Cholerton, S., Bateman, D. N. & Idle, J. R. (1992). Mutant debrisoquine hydroxylation genes in Parkinson's disease. Lancet, 339, 1017–18CrossRefGoogle ScholarPubMed
Auluck, P. K., Chan,, H. Y., Trojanowski, J. Q., Lee,, V. M. & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science, 295, 865–8CrossRefGoogle Scholar
Bandmann, O., Vaughan,, J. R., Holmans, P., Marsden,, C. D. & Wood, N. (1998). Association of slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson's disease. Lancet, 350, 1136–9CrossRefGoogle Scholar
Biere, A. L., Wood, S. J., Wypych, J.et al. (2000). Parkinson's disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J. Biol. Chem., 275, 34574–9CrossRefGoogle ScholarPubMed
Bonifati, V., Fabrizio, E., Vanacore, N., Mari, M. & Meco, G. (1995). Familial Parkinson's disease: a clinical genetic analysis. Can. J. Neurol. Sci., 22, 272–9CrossRefGoogle ScholarPubMed
Bonifati, V., Rizzu, P., Baren, M. J.et al. (2002). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–9CrossRefGoogle ScholarPubMed
Burn, D. J., Mark,, M. H., Playford, E. D. (1992). Parkinson's disease in twins studied with 18F-dopa and positron emission tomography. Neurology, 42, 1894–900CrossRefGoogle ScholarPubMed
Chung, K. K., Zhang, Y., Lim, K. L.et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med., 7, 1144–50CrossRefGoogle ScholarPubMed
Conway, K. A., Harper,, J. D. & Lansbury, P. T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–20CrossRefGoogle ScholarPubMed
Conway, K. A., Lee,, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E. & Lansbury, P. T. J. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci., USA, 97 (2), 571–6CrossRefGoogle Scholar
Costa, P., Checkoway, H., Levy, D.et al. (1997). Association of a polymorphism in intron 13 of the monoamine oxidase B gene with Parkinson disease. Am. J. Med. Genet., 74, 154–63.0.CO;2-U>CrossRefGoogle ScholarPubMed
Michele, G., Filla, A., Marconi, R.et al. (1995). A genetic study of Parkinson's disease. J. Neural. Transm. Supp. 45, 21–5Google ScholarPubMed
DeStefano, A. L., Golbe, L. I., Mark, M. H.et al. (2001). Genome-wide scan for Parkinson's disease: the Gene PD Study. Neurology, 57, 1124–6CrossRefGoogle Scholar
DeStefano, A. L., Lew, M. F., Golbe, L. I.et al. (2002). PARK3 Influences on age at onset in Parkinson disease: a genome scan in the gene PD study. Am. J. Hum. Genet., 70, 1089–95CrossRefGoogle Scholar
Diederich, N., Hilger, C., Goetz, C. G.et al. (1996). Genetic variability of the CYP2D6 gene is not a risk factor for sporadic Parkinson's disease. Ann. Neurol., 40, 463–5CrossRefGoogle Scholar
Duda, J. E., Giasson, B. I., Mabon, M. E.et al. (2002). Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol. (Berl.), 104, 7–11CrossRefGoogle ScholarPubMed
Duvoisin, R. C. (1986). Etiology of Parkinson's disease: current concepts. Clin. Neuropharmacol., 9 Suppl 1, S3–21CrossRefGoogle ScholarPubMed
Farrer, M., Chan, P., Chen, R.et al. (2001). Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol., 50, 293–300CrossRefGoogle ScholarPubMed
Farrer, M., Gwinn-Hardy, K., , Muenter, M. (1999). A chromosome 4p haplotype segregating with Parkinson's disease and postural tremor. Hum. Mol. Genet., 8, 81–5CrossRefGoogle ScholarPubMed
Farrer, M., Destee, T., Becquet, E.et al. (2000). Linkage exclusion in French families with probable Parkinson's disease. Mov. Disord., 15, 1075–833.0.CO;2-2>CrossRefGoogle Scholar
Feany, M. B. & Bender, W. W. (2000). A Drosophila model of Parkinson's disease. Nature, 404, 394–8CrossRefGoogle ScholarPubMed
Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S. & Obata, F. (2002). A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol., 51, 296–301CrossRefGoogle ScholarPubMed
Gasser, T. (2003). Overview of the genetics of parkinsonism. Adv. Neurol. 91, 143–52Google ScholarPubMed
Gasser, T., Müller-Myhsok, B., Supala, A.et al. (1996). The CYP2D6B-allele is not over-represented in a population of German patients with idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatr., 61, 518–20CrossRefGoogle ScholarPubMed
Gasser, T., Müller-Myhsok, B., Wszolek, Z. K.et al. (1998). A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat. Genet., 18, 262–5CrossRefGoogle ScholarPubMed
Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q. & Lee, V. M. (2002). Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron, 34, 521–33CrossRefGoogle ScholarPubMed
Gibb, W. R. & Lees, A. J. (1989). The significance of the Lewy body in the diagnosis of idiopathic Parkinson's disease. Neuropathol. Appl. Neurobiol. 15, 27–44CrossRefGoogle Scholar
Golbe, L. I., Di Iorio, G., Bonavita, V., Miller,, D. C. & Duvoisin, R. C. (1990). A large kindred with autosomal dominant Parkinson's disease. Ann. Neurol., 27, 276–82CrossRefGoogle ScholarPubMed
Golbe, L. I., Di Iorio, G., Sanges, G.et al. (1996). Clinical genetic analysis of Parkinson's disease in the Contursi kindred. Ann. Neurol., 40, 767–75CrossRefGoogle ScholarPubMed
Gowers, W. R. (1888). Diseases of the Nervous System. pp. 996. Philadelphia: P. Blakiston, Son & Co.
Harhangi, B. S., Farrer, M. J., Lincoln, S.et al. (1999a). The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neurosci. Lett., 270, 1–4CrossRefGoogle Scholar
Harhangi, B. S., Oostra, B. A., Heutink, P., Duijn, C. M., Hofman, A. & Breteler, M. M. (1999b). N-acetyltransferase-2 polymorphism in Parkinson's disease: the Rotterdam study. J. Neurol. Neurosurg. Psychiatr., 67, 518–20CrossRefGoogle Scholar
Hicks, A. A., Petursson, H., Jonsson, T.et al. (2002). A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann. Neurol., 52, 549–55CrossRefGoogle ScholarPubMed
Hilker, R., Klein, C., Ghaemi, M.et al. (2001). Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann. Neurol., 49, 367–76CrossRefGoogle ScholarPubMed
Ho, S. L., Kapadi,, A. L., Ramsden, D. B. & Williams, A. C. (1995). An allelic association study of monoamine oxidase B in Parkinson's disease. Ann. Neurol., 37, 403–5CrossRefGoogle ScholarPubMed
Hotamisligil, G. S., Girmen, A. S., Fink, J. S., et al. (1994). Hereditary variations in monoamine oxidase as a risk factor for Parkinson's disease. Mov. Disord., 9, 305–10CrossRefGoogle ScholarPubMed
Ichinose, H., Ohye, T., Takahashi, E.et al. (1994). Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat. Genet., 8, 236–42CrossRefGoogle ScholarPubMed
Imai, Y., Soda, M., Inoue, H., Hattori, N., Mizuno, Y. & Takahashi, R. (2001). An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell, 105, 891–902CrossRefGoogle ScholarPubMed
Ishikawa, A. & Tsuji, S. (1996). Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology, 47, 160–6CrossRefGoogle ScholarPubMed
Jensen, P. H., Nielsen, M. S., Jakes, R., Dotti, C. G. & Goedert, M. (1998). Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J. Biol. Chem., 273, 26292–4CrossRefGoogle ScholarPubMed
Kahle, P. J., Neumann, M., Ozmen, L.et al. (2000a). Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J. Neurosci., 20, 6365–73CrossRefGoogle Scholar
Kahle, P. J., Leimer, U. & Haass, C. (2000b). Does failure of parkin-mediated ubiquitination cause juvenile parkinsonism?Trends Biochem. Sci., 25, 524–7CrossRefGoogle Scholar
Kimpara, T., Takeda, A., Watanabe, K.et al. (1997). Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Hum. Genet., 100, 145–7CrossRefGoogle ScholarPubMed
Kitada, T., Asakawa, S., Hattori, N.et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–8CrossRefGoogle Scholar
Klein, C., Pramstaller, P. P., Kis, B.et al. (2000a). Parkin deletions in a family with adult-onset, tremor-dominant parkinsonism: expanding the phenotype. Ann. Neurol., 48, 65–713.0.CO;2-L>CrossRefGoogle Scholar
Klein, C., Schumacher, K., Jacobs, H.et al. (2000b). Association studies of Parkinson's disease and parkin polymorphisms. Ann. Neurol., 48, 126–73.0.CO;2-K>CrossRefGoogle Scholar
Krüger, R., , Vieira-Saecker, A. M., Kuhn, W.et al. (1999). Increased susceptibility to sporadic Parkinson's disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann. Neurol., 45, 611–173.0.CO;2-X>CrossRefGoogle Scholar
Krüger, R., Kuhn, W., Müller, T., et al. (1998). Ala39Pro mutation in the gene encoding a-synuclein in Parkinson's disease. Nat. Genet. 18, 106–8CrossRefGoogle Scholar
Kurth, J. H., Kurth, M. C., Poduslo, S. E. & Schwankhaus, J. D. (1993). Association of a monoamine oxidase B allele with Parkinson's disease. Ann. Neurol., 33, 368–72CrossRefGoogle ScholarPubMed
Lazzarini, A. M., Myers, R. H., Zimmerman, T. R. Jr.et al. (1994). A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology, 44, 499–506CrossRefGoogle ScholarPubMed
Couteur, D. G., Leighton, P. W., McCann, S. J. & Pond, S. M. (1997). Association of a polymorphism in the dopamine-transporter gene with Parkinson's disease. Mov. Disord., 12, 760–3CrossRefGoogle ScholarPubMed
Le, W. D., Xu, P., Jankovic, J.et al. (2003). Mutations in NR4A2 associated with familial Parkinson disease. Nat. Genet., 33, 85–9CrossRefGoogle ScholarPubMed
Lee, M. K., Stirling, W., Xu, Y.et al. (2002). Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53-Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci., USA, 99, 8968–73CrossRefGoogle Scholar
Leighton, P. W., Couteur, D. G., Pang, C. C.et al. (1997). The dopamine transporter gene and Parkinson's disease in a Chinese population. Neurology, 49, 1577–9CrossRefGoogle ScholarPubMed
Leroy, E., Boyer, R., Auburger, G.et al. (1998). The ubiquitin pathway in Parkinson's disease (letter). Nature, 395, 451–2CrossRefGoogle Scholar
Li, Y. J., Scott, W. K., Hedges, D. J.et al. (2002). Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet., 70, 985–93CrossRefGoogle ScholarPubMed
Lincoln, S., Vaughan, J., Wood, N.et al. (1999). Low frequency of pathogenic mutations in the ubiquitin carboxy-terminal hydrolase gene in familial Parkinson's disease (In Process Citation). Neuroreport, 10, 427–9CrossRefGoogle Scholar
Lücking, C. B., Dürr, A., , Bonifati, V.et al. (2000). Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med., 342, 1560–7CrossRefGoogle ScholarPubMed
Maher, N. E., Currie, L. J., Lazzarini, A. M.et al. (2002). Segregation analysis of Parkinson disease revealing evidence for a major causative gene. Am. J. Med. Genet., 109, 191–7CrossRefGoogle ScholarPubMed
Maraganore, D. M., Farrer, M. J., Hardy, J. A., Lincoln, S. J., McDonnell, S. K., Rocca, W. A. (1999). Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. Neurology, 53, 1858–60CrossRefGoogle ScholarPubMed
Maraganore, D. M., Lesnick, T. G., Elbaz, A.et al. (2004). UCHL1 is a Parkinson's disease susceptibility gene. Ann. Neurol., 55, 512–21CrossRefGoogle ScholarPubMed
Marder, K., Tang, M. X., Mejia, H., Alfaro, B., Cote, L., Louis, E., Groves, J., Mayeux, R. (1996). Risk of Parkinson's disease among first-degree relatives: a community-based study. Neurology, 47, 155–160CrossRefGoogle ScholarPubMed
Martinez, M. M., Brice, A., Vaughan, J. R.et al. (2004). Genome-wide Scan linkage analysis for Parkinson's disease. The European Genetic Study of PD. J. Med. Genet., 41, 900–7CrossRefGoogle Scholar
Markopoulou, K., Wszolek, Z. K. & Pfeiffer, R. F. (1995). A Greek-American kindred with autosomal dominant, levodopa-responsive parkinsonism and anticipation. Ann. Neurol., 38, 373–8CrossRefGoogle ScholarPubMed
Masliah, E., Rockenstein, E., Veinbergs, I.et al. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 287, 1265–9CrossRefGoogle ScholarPubMed
Matsumine, H., Saito, M., Shimoda-Matsubayashi, S., et al. (1997). Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2–27. Am. J. Hum. Genet., 60, 588–96Google ScholarPubMed
Matsuoka, Y., Vila, M., Lincoln, S.et al. (2001). Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol. Dis., 8, 535–9CrossRefGoogle ScholarPubMed
McLean, P. J., Kawamata, H., Ribich, S. L., Hyman, B. T. (2000). Membrane association and protein conformation of alpha-synuclein in intact neurons. Effect of parkinson's disease-linked mutations. J. Biol. Chem., 275, 8812–16CrossRefGoogle ScholarPubMed
McNaught, K. S. & Jenner, P. (2001). Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett., 19 (297) 191–4CrossRefGoogle ScholarPubMed
McNaught, K. S., Olanow, C. W., Halliwell, B., Isacson, O. & Jenner, P., (2001). Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat. Rev. Neurosci., 2, 589–94CrossRefGoogle ScholarPubMed
Mellick, G. D. & Silburn, P. A. (2000). The ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism does not confer protection against idiopathic Parkinson's disease. Neurosci. Lett., 293, 127–30CrossRefGoogle Scholar
Moilanen, J. S., Autere, J. M., Myllyla, V. V. & Majamaa, K. (2001). Complex segregation analysis of Parkinson's disease in the Finnish population. Hum. Genet., 108, 184–9Google ScholarPubMed
Muenter, M. D., Forno, L. S., Hornykiewicz, O.et al. (1998). Hereditary form of parkinsonism – dementia. Ann. Neurol., 43, 768–81CrossRefGoogle ScholarPubMed
Nanko, S., Ueki, A., Hattori, M.et al. (1994). No allelic association between Parkinson's disease and dopamine D2, D3, and D4 receptor gene polymorphisms. Am. J. Med. Genet., 54, 361–4CrossRefGoogle ScholarPubMed
Neumann, M., Kahle, P. J., Giasson, B. I.et al. (2002). Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J. Clin. Invest., 110, 1429–39CrossRefGoogle ScholarPubMed
Nichols, W. C., Uniacke, S. K., Pankratz, N.et al. (2004). Evaluation of the role of Nurrl in a large sample of familial Parkinson's disease. Mov. Disord., 19, 649–55CrossRefGoogle Scholar
Pankratz, N., Nichols, W. C., Uniacke, S. K.et al. (2002). Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am. J. Hum. Genet., 71, 124–35CrossRefGoogle Scholar
Pankratz, N., Nichols, W. C., Uniacke, S. K.et al. (2003). PARK3 and PARK7 Linked to Age of Onset of Parkinson Disease. Neurology, 60, Abstract P02.076Google Scholar
Papadimitriou, A., Veletza, V., Hadjigeorgiou, G. M., Patrikiou, A., Hirano, M. & Anastasopoulos, I. (1999). Mutated alpha-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance?Neurology, 52, 651–4CrossRefGoogle ScholarPubMed
Parsian, A., Racette, B., Zhang, Z. H.et al. (1998). Mutation, sequence analysis, and association studies of alpha-synuclein in Parkinson's disease. Neurology, 51, 1757–9CrossRefGoogle ScholarPubMed
Pendleton, R. G., Parvez, F., Sayed, M. & Hillman, R. (2002). Effects of pharmacological agents upon a transgenic model of Parkinson's disease in Drosophila melanogaster. J. Pharmacol. Exp. Ther., 300, 91–6CrossRefGoogle ScholarPubMed
Perry, T. L., Wright, J. M., Berry, K., Hansen, S. & Perry, T. L. Jr. (1990). Dominantly inherited apathy, central hypoventilation, and Parkinson's syndrome: clinical, biochemical, and neuropathologic studies of 2 new cases. Neurology, 40, 1882–7CrossRefGoogle ScholarPubMed
Plante Bordeneuve, V., Taussig, D., Thomas, F.et al. (1997). Evaluation of four candidate genes encoding proteins of the dopamine pathway in familial and sporadic Parkinson's disease: evidence for association of a DRD2 allele. Neurology, 48, 1589–93CrossRefGoogle ScholarPubMed
Polymeropoulos, M. H., Lavedan, C., Leroy, E.et al. (1997). Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science, 276, 2045–7CrossRefGoogle ScholarPubMed
Saigoh, K., Wang, Y. L., Suh, J. G.et al. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet., 23, 47–51CrossRefGoogle ScholarPubMed
Satoh, J. & Kuroda, Y. (1999). Association of codon 167 Ser/Asn heterozygosity in the parkin gene with sporadic Parkinson's disease. Neuroreport, 10, 2735–9CrossRefGoogle Scholar
Saucedo-Cardenas, O., , Quintana-Hau, J. D., Le, W. D.et al. (1998). Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci., USA, 95, 4013–18CrossRefGoogle Scholar
Scott, W. K., Yamaoka, L. H., Stajich, J. M.et al. (1999). The alpha-synuclein gene is not a major risk factor in familial Parkinson disease. Neurogenetics, 2, 191–2CrossRefGoogle Scholar
Scott, W. K., Nance, M. A., Watts, R. L.et al. (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. J. Am. Med. Assoc., 286, 2239–44CrossRefGoogle ScholarPubMed
Seltman, H., Roeder, K. & Devlin, B. (2001). Transmission/disequilibrium test meets measured haplotype analysis: family-based association analysis guided by evolution of haplotypes. Am. J. Hum. Genet., 68, 1250–63CrossRefGoogle ScholarPubMed
Shimura, H., Hattori, N., Kubo, S.et al. (2000). Familial parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 25, 302–5CrossRefGoogle ScholarPubMed
Shimura, H., Schlossmacher, M. G., Hattori, N.et al. (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science, 293, 263–9CrossRefGoogle ScholarPubMed
Singleton, A. B., Farrer, M., Johnson, I.et al.alpha-synuclein locus triplication causes Parkinson's disease. Science, (2003), 302, 841CrossRefGoogle ScholarPubMed
Smith, C. A., Gough, A. C., Leigh, P. N.et al. (1992). Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson's disease. Lancet, 339, 1375–7CrossRefGoogle ScholarPubMed
Spielman, R. S. & Ewens, W. J. (1998). A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet., 62, 450–8CrossRefGoogle ScholarPubMed
Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R. & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388, 839–40CrossRefGoogle ScholarPubMed
Spira, P. J., Sharpe, D. M., Halliday, G., Cavanagh, J. & Nicholson, G. A. (2001). Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann. Neurol., 49, 313–19CrossRefGoogle Scholar
Sveinbjornsdottir, S., Hicks, A. A., Jonsson, T.et al. (2000). Familial aggregation of Parkinson's disease in Iceland. N. Engl. J. Med., 343, 1765–70CrossRefGoogle ScholarPubMed
Takahashi, H., Ohama, E., Suzuki, S.et al. (1994). Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology, 44, 437–41CrossRefGoogle ScholarPubMed
Takakubo, F., Yamamoto, M., Ogawa, N., Yamashita, Y., Mizuno, Y. & Kondo, I. (1996) Genetic association between cytochrome P450IA1 gene and susceptibility to Parkinson's disease. J. Neural Transm. Gen. Sect., 103, 843–9CrossRefGoogle ScholarPubMed
Taylor, M. C., Couteur, D. G., Mellick, G. D. & Board, P. G. (2000). Paraoxonase polymorphisms, pesticide exposure and Parkinson's disease in a Caucasian population. J. Neural Transm., 107, 979–83CrossRefGoogle Scholar
Valente, E. M., Bentivoglio, A. R., Dixon, P. H.et al. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, park6, on human chromosome 1p35–p36. Am. J. Hum. Genet., 68, 895–900CrossRefGoogle ScholarPubMed
Valente, E. M., Abou-Sleiman, P. M., Caputo, V.et al. (2004). Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 304, 1158–60CrossRefGoogle ScholarPubMed
Duijn, C. M., Dekker, M. C., Bonifati, V. (2001). Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am. J. Hum. Genet., 69, 629–34CrossRefGoogle ScholarPubMed
Vieregge, P. & Heberlein, I. (1995). Increased risk of Parkinson's disease in relatives of patients. Ann. Neurol., 37, 685CrossRefGoogle ScholarPubMed
Wang, J. & Liu, Z. (2000). No association between paraoxonase 1 (PON1) gene polymorphisms and susceptibility to Parkinson's disease in a Chinese population. Mov. Disord., 15, 1265–73.0.CO;2-0>CrossRefGoogle ScholarPubMed
Wang, M., Hattori, N., Matsumine, H.et al. (1999). Polymorphism in the parkin gene in sporadic Parkinson's disease. Ann. Neurol., 45, 655–83.0.CO;2-G>CrossRefGoogle Scholar
Ward, C. D., Duvoisin, R. C., Ince, S. E., Nutt, J. D., Eldridge, R. & Calne, D. B. (1983). Parkinson's disease in 65 pairs of twins and in a set of quadruplets. Neurology, 33, 815–24CrossRefGoogle Scholar
West, A. B., Zimprich, A., Lockhart, P. J.et al. (2001). Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. Eur. J. Hum. Genet., 9, 659–66CrossRefGoogle ScholarPubMed
Whitehead, A. S., Bertrandy, S., Finnan, F., Butler, A., Smith, G. D. & Ben-Shlomo, Y. (1996). Frequency of the apolipoprotein E epsilon 4 allele in a case-control study of early onset Parkinson's disease. J. Neurol. Neurosurg. Psychiatr., 61, 347–51CrossRefGoogle Scholar
Wilhelmsen, K. C. & Wszolek, Z. K. (1995). Is there a genetic susceptibility to idiopathic parkinsonism?Parkinsonism Rel. Disord., 1, 73–84CrossRefGoogle Scholar
Wintermeyer, P., Kruger, R., Kuhn, W.et al. (2000). Mutation analysis and association studies of the UCHL1 gene in German Parkinson's disease patients. Neuroreport, 11, 2079–82CrossRefGoogle ScholarPubMed
Wszolek, Z. K., Cordes, M., Calne, D. B., Munter, M. D., Cordes, I. & Pfeifer, R. F. (1993). Hereditary Parkinson disease: report of 3 families with dominant autosomal inheritance. Nervenarzt, 64, 331–5Google ScholarPubMed
Wszolek, Z. K., Pfeiffer, B. & Fulgham, J. R. (1995). Western Nebraska family (family D) with autosomal dominant parkinsonism. Neurology, 45, 502–5CrossRefGoogle Scholar
Wszolek, Z. K., Gwinn-Hardy, K. & Wszolek, E. K. (2002). Family C (German-American) with late onset parkinsonism: longitudinal observations including autopsy. Acta Neuropathol. (Berl.), 103, 344–50Google Scholar
Xie, T., Ho, S. L., Li,, L. S. & Ma, O. C. (1997). G/A1947 polymorphism in catechol-O-methyltransferase (COMT) gene in Parkinson's disease. Mov. Disord., 12, 426–7CrossRefGoogle ScholarPubMed
Yoritaka, A., Hattori, N., Yoshino, H. & Mizuno, Y. (1997). Catechol-O-methyltransferase genotype and susceptibility to Parkinson's disease in Japan (in process citation). J. Neural Transm., 104, 1313–17CrossRefGoogle Scholar
Zareparsi, S., Taylor, T. D., Harris, E. L. & Payami, H. (1998). Segregation analysis of Parkinson disease. Am. J. Med. Genet., 80, 410–173.0.CO;2-2>CrossRefGoogle ScholarPubMed
Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C.et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol., 55, 164–73CrossRefGoogle ScholarPubMed
Zhang, Y., Gao, J., Chung, K. K., Huang, H., Dawson, V. L. & Dawson, T. M. (2000). Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci., USA, 97, 13354–9CrossRefGoogle ScholarPubMed
Zimprich, A., Asmus, E., Leitner, P.et al. (2003). Point mutations in exon 1 of the NR4A2 gene are not a major cause of familial Parkinson's disease. Neurogenetics, 4, 219–20Google ScholarPubMed
Zimprich, A., Biskup, S., Leitner, P.et al. (2004). Mutations in LRRK2 cause autosomal – dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601–607CrossRefGoogle ScholarPubMed
Zimprich, A., Muller-Myhsok, B., Farrer, M.et al. (2004). The PARK8 locus in autosomal-dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am. J. Hum. Genet., 74, 11–19CrossRefGoogle ScholarPubMed
Zink, M., Grimm, L., Wszolek, Z. K. & Gasser, T. (2001). Autosomal-dominant Parkinson's disease linked to 2p13 is not caused by mutations in transforming growth factor alpha (TGF alpha). J. Neural Transm., 108, 1029–34CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Genetics of parkinsonism
    • By Thomas Gasser, Department of Neurodegenerative Disorders, Hertie-Institute for Clinical Brain Research Center of Neurology, University of Tübingen, Germany, thomas.gasser@med.uni-tuebingen.de
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.041
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Genetics of parkinsonism
    • By Thomas Gasser, Department of Neurodegenerative Disorders, Hertie-Institute for Clinical Brain Research Center of Neurology, University of Tübingen, Germany, thomas.gasser@med.uni-tuebingen.de
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.041
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Genetics of parkinsonism
    • By Thomas Gasser, Department of Neurodegenerative Disorders, Hertie-Institute for Clinical Brain Research Center of Neurology, University of Tübingen, Germany, thomas.gasser@med.uni-tuebingen.de
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.041
Available formats
×