Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-27T16:25:55.974Z Has data issue: false hasContentIssue false

Chapter 27 - Surgery in the patient with renal disease

from Section 8 - Renal disease

Published online by Cambridge University Press:  05 September 2013

Michael F. Lubin
Affiliation:
Emory University, Atlanta
Thomas F. Dodson
Affiliation:
Emory University, Atlanta
Neil H. Winawer
Affiliation:
Emory University, Atlanta
Get access

Summary

Introduction

Kidney disease encompasses a wide spectrum of disorders, ranging from those with normal glomerular filtration rates (GFR) but with urinary abnormalities (nephrotic syndrome or nephritic syndrome), to those with GFR impairments. Patients with a long-standing history (months to years) of renal disease are deemed to have chronic kidney disease (CKD). A staging system has been developed by the National Kidney Foundation to categorize CKD by GFR levels: Stage 1 (GFR ≥ 90 mL/min, but with persistent urinary abnormalities such as proteinuria); Stage 2, mild CKD (GFR 60–89 mL/min); Stage 3, moderate CKD (GFR 30–59 mL/min); Stage 4, severe CKD (GFR 15–29 mL/min); and finally Stage 5, kidney failure or end-stage renal disease (ESRD) (GFR < 15 mL/min or on some form of renal replacement therapy). There is clinical rationale in dividing CKD into these stages; patients with more advanced stages, especially those at stage 3 or higher, have higher rates of death, cardiovascular events, and hospitalizations [1]. In contrast to established kidney disease, acute kidney injury (AKI), previously termed “acute renal failure,” reflects renal dysfunction that arises in the span of hours to days. AKI can develop in those with previously normal kidney function or can be superimposed upon existing CKD. More advanced CKD stages 3 through 5 and AKI are most commonly associated with perioperative complications, and these patients will be the focus of this chapter.

Type
Chapter
Information
Medical Management of the Surgical Patient
A Textbook of Perioperative Medicine
, pp. 299 - 330
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Go, AS, Chertow, GM, Fan, D et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–305.CrossRefGoogle ScholarPubMed
US Renal Data System, USRDS 2010 Annual Data Report. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States; 2011.
Coresh, J, Selvin, E, Stevens, LA et al. Prevalence of chronic kidney disease in the United States. J Am Med Assoc 2007; 298: 2038–47.CrossRefGoogle ScholarPubMed
Hsu, CY, Chertow, GM, McCulloch, CE et al. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin J Am Soc Nephrol 2009; 4: 891–8.CrossRefGoogle ScholarPubMed
Lo, LJ, Go, AS, Chertow, GM et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int 2009; 76: 893–9.CrossRefGoogle ScholarPubMed
Kellerman, PS.Perioperative care of the renal patient. Arch Intern Med 1994; 154: 1674–88.CrossRefGoogle ScholarPubMed
Bechtel, JF, Detter, C, Fischlein, T et al. Cardiac surgery in patients on dialysis: decreased 30-day mortality, unchanged overall survival. Ann Thorac Surg 2008; 85: 147–53.CrossRefGoogle ScholarPubMed
Rahmanian, PB, Adams, DH, Castillo, JG et al. Early and late outcome of cardiac surgery in dialysis-dependent patients: single-center experience with 245 consecutive patients. J Thorac Cardiovasc Surg 2008; 135: 915–22.CrossRefGoogle ScholarPubMed
Thourani, VH, Sarin, EL, Kilgo, PD et al. Short- and long-term outcomes in patients undergoing valve surgery with end-stage renal failure receiving chronic hemodialysis. J Thorac Cardiovasc Surg 2012; 144: 117–23.CrossRefGoogle Scholar
Diez, C, Mohr, P, Kuss, O et al. Impact of preoperative renal dysfunction on in-hospital mortality after solitary valve and combined valve and coronary procedures. Ann Thorac Surg 2009; 87: 731–6.CrossRefGoogle ScholarPubMed
Howell, NJ, Keogh, BE, Bonser, RS et al. Mild renal dysfunction predicts in-hospital mortality and post-discharge survival following cardiac surgery. Eur J Cardiothorac Surg 2008; 34: 390–5; discussion 395.CrossRefGoogle ScholarPubMed
Eknoyan, G, Beck, GJ, Cheung, AK et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 2002; 347(25): 2010–19.CrossRefGoogle ScholarPubMed
Wang, AY, Lam, CW, Chan, IH et al. Sudden cardiac death in end-stage renal disease patients: a 5-year prospective analysis. Hypertension 2010; 56: 210–16.CrossRefGoogle ScholarPubMed
Wanner, C, Krane, V, Marz, W et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 2005; 353: 238–48.CrossRefGoogle ScholarPubMed
Goldenberg, I, Moss, AJ, McNitt, S et al. Relations among renal function, risk of sudden cardiac death, and benefit of the implanted cardiac defibrillator in patients with ischemic left ventricular dysfunction. Am J Cardiol 2006; 98: 485–90.CrossRefGoogle ScholarPubMed
Pun, PH, Smarz, TR, Honeycutt, EF et al. Chronic kidney disease is associated with increased risk of sudden cardiac death among patients with coronary artery disease. Kidney Int 2009; 76: 652–8.CrossRefGoogle ScholarPubMed
Herzog, CA, Littrell, K, Arko, C et al. Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. Circulation 2007; 116: 1465–72.CrossRefGoogle ScholarPubMed
Sosnov, J, Lessard, D, Goldberg, RJ et al. Differential symptoms of acute myocardial infarction in patients with kidney disease: a community-wide perspective. Am J Kidney Dis 2006; 47: 378–84.CrossRefGoogle ScholarPubMed
Rostand, SG, Brunzell, JD, Cannon, RO et al. Cardiovascular complications in renal failure. J Am Soc Nephrol 1991; 2: 1053–62.Google ScholarPubMed
Rostand, SG, Kirk, KA, Rutsky, EA.Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int 1984; 25: 653–9.CrossRefGoogle ScholarPubMed
Rostand, SG, Kirk, KA, Rutsky, EA.The epidemiology of coronary artery disease in patients on maintenance hemodialysis: implications for management. Contrib Nephrol 1986; 52: 34–41.CrossRefGoogle ScholarPubMed
Schmidt, A, Stefenelli, T, Schuster, E et al. Informational contribution of noninvasive screening tests for coronary artery disease in patients on chronic renal replacement therapy. Am J Kidney Dis 2001; 37: 56–63.CrossRefGoogle ScholarPubMed
Foley, RN, Parfrey, PS, Harnett, JD et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 1995; 47: 186–92.CrossRefGoogle ScholarPubMed
Foley, RN, Parfrey, PS, Sarnak, MJ.Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 1998; 9 (12 Suppl): S16–23.Google ScholarPubMed
Nally, JV. Cardiac disease in chronic uremia: investigation. Adv Ren Replace Ther 1997; 4: 225–33.CrossRefGoogle ScholarPubMed
Agarwal, R.Blood pressure and mortality among hemodialysis patients. Hypertension 2010; 55: 762–8.CrossRefGoogle ScholarPubMed
Isbel, NM, Haluska, B, Johnson, DW et al. Increased targeting of cardiovascular risk factors in patients with chronic kidney disease does not improve atheroma burden or cardiovascular function. Am Heart J 2006; 151: 745–53.CrossRefGoogle ScholarPubMed
Karthikeyan, V, Ananthasubramaniam, K.Coronary risk assessment and management options in chronic kidney disease patients prior to kidney transplantation. Curr Cardiol Rev 2009; 5: 177–86.CrossRefGoogle ScholarPubMed
West, JC, Napoliello, DA, Costello, JM et al. Preoperative dobutamine stress echocardiography versus cardiac arteriography for risk assessment prior to renal transplantation. Transpl Int 2000; 13 (Suppl 1): S27–30.CrossRefGoogle ScholarPubMed
Le, A, Wilson, R, Douek, K et al. Prospective risk stratification in renal transplant candidates for cardiac death. Am J Kidney Dis 1994; 24: 65–71.CrossRefGoogle ScholarPubMed
Dahan, M, Viron, BM, Poiseau, E et al. Combined dipyridamole-exercise stress echocardiography for detection of myocardial ischemia in hemodialysis patients: an alternative to stress nuclear imaging. Am J Kidney Dis 2002; 40: 737–44.CrossRefGoogle ScholarPubMed
Holley, JL, Fenton, RA, Arthur, RS.Thallium stress testing does not predict cardiovascular risk in diabetic patients with end-stage renal disease undergoing cadaveric renal transplantation. Am J Med 1991; 90: 563–70.CrossRefGoogle Scholar
Marwick, TH, Steinmuller, DR, Underwood, DA et al. Ineffectiveness of dipyridamole SPECT thallium imaging as a screening technique for coronary artery disease in patients with end-stage renal failure. Transplantation 1990; 49: 100–3.CrossRefGoogle ScholarPubMed
Mistry, BM, Bastani, B, Solomon, H et al. Prognostic value of dipyridamole thallium-201 screening to minimize perioperative cardiac complications in diabetics undergoing kidney or kidney-pancreas transplantation. Clin Transplant 1998; 12: 130–5.Google ScholarPubMed
Manske, CL, Thomas, W, Wang, Y et al. Screening diabetic transplant candidates for coronary artery disease: identification of a low risk subgroup. Kidney Int 1993; 44: 617–21.CrossRefGoogle ScholarPubMed
McFalls, EO, Ward, HB, Moritz, TE et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med 2004; 351: 2795–804.CrossRefGoogle ScholarPubMed
Poldermans, D, Schouten, O, Vidakovic, R et al. A clinical randomized trial to evaluate the safety of a noninvasive approach in high-risk patients undergoing major vascular surgery: the DECREASE-V Pilot Study. J Am Coll Cardiol 2007; 49: 1763–9.CrossRefGoogle ScholarPubMed
Fleisher, LA, Beckman, JA, Brown, KA et al. ACC/AHA 2007 Guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery) developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. J Am Coll Cardiol 2007; 50: 1707–32.CrossRefGoogle Scholar
Cohen, MC, Aretz, TH.Histological analysis of coronary artery lesions in fatal postoperative myocardial infarction. Cardiovasc Pathol 1999; 8: 133–9.CrossRefGoogle ScholarPubMed
Poldermans, D, Boersma, E, Bax, JJ et al. Correlation of location of acute myocardial infarct after noncardiac vascular surgery with preoperative dobutamine echocardiographic findings. Am J Cardiol 2001; 88: 1413–14, A6.CrossRefGoogle ScholarPubMed
Abe, S, Yoshizawa, M, Nakanishi, N et al. Electrocardiographic abnormalities in patients receiving hemodialysis. Am Heart J 1996; 131: 1137–44.CrossRefGoogle ScholarPubMed
Sharma, R, Pellerin, D, Gaze, DC et al. Dobutamine stress echocardiography and the resting but not exercise electrocardiograph predict severe coronary artery disease in renal transplant candidates. Nephrol Dial Transplant 2005; 20: 2207–14.CrossRefGoogle Scholar
Brown, KA, Rimmer, J, Haisch, C.Noninvasive cardiac risk stratification of diabetic and nondiabetic uremic renal allograft candidates using dipyridamole-thallium-201 imaging and radionuclide ventriculography. Am J Cardiol 1989; 64: 1017–21.CrossRefGoogle ScholarPubMed
Cottier, C, Pfisterer, M, Muller-Brand, J et al. Cardiac evaluation of candidates for kidney transplantation: value of exercise radionuclide angiocardiography. Eur Heart J 1990; 11: 832–8.CrossRefGoogle ScholarPubMed
Iqbal, A, Gibbons, RJ, McGoon, MD et al. Noninvasive assessment of cardiac risk in insulin-dependent diabetic patients being evaluated for pancreatic transplantation using thallium-201 myocardial perfusion scintigraphy. Clin Transplant 1991; 5: 13–19.Google ScholarPubMed
Morrow, CE, Schwartz, JS, Sutherland, DE et al. Predictive value of thallium stress testing for coronary and cardiovascular events in uremic diabetic patients before renal transplantation. Am J Surg 1983; 146: 331–5.CrossRefGoogle ScholarPubMed
Philipson, JD, Carpenter, BJ, Itzkoff, J et al. Evaluation of cardiovascular risk for renal transplantation in diabetic patients. Am J Med 1986; 81: 630–4.CrossRefGoogle ScholarPubMed
Suki, WN.Use of diuretics in chronic renal failure. Kidney Int Suppl 1997; 59: S33–5.Google ScholarPubMed
Vandenberg, BF, Rossen, JD, Grover-McKay, M et al. Evaluation of diabetic patients for renal and pancreas transplantation: noninvasive screening for coronary artery disease using radionuclide methods. Transplantation 1996; 62: 1230–5.CrossRefGoogle ScholarPubMed
Boudreau, RJ, Strony, JT, duCret, RP et al. Perfusion thallium imaging of type I diabetes patients with end stage renal disease: comparison of oral and intravenous dipyridamole administration. Radiology 1990; 175: 103–5.CrossRefGoogle ScholarPubMed
Trochu, JN, Cantarovich, D, Renaudeau, J et al. Assessment of coronary artery disease by thallium scan in type-1 diabetic uremic patients awaiting combined pancreas and renal transplantation. Angiology 1991; 42: 302–7.CrossRefGoogle ScholarPubMed
Bates, JR, Sawada, SG, Segar, DS et al. Evaluation using dobutamine stress echocardiography in patients with insulin-dependent diabetes mellitus before kidney and/or pancreas transplantation. Am J Cardiol 1996; 77: 175–9.CrossRefGoogle ScholarPubMed
De Lima, JJ, Sabbaga, E, Vieira, ML et al. Coronary angiography is the best predictor of events in renal transplant candidates compared with noninvasive testing. Hypertension 2003; 42: 263–8.CrossRefGoogle Scholar
Herzog, CA, Marwick, TH, Pheley, AM et al. Dobutamine stress echocardiography for the detection of significant coronary artery disease in renal transplant candidates. Am J Kidney Dis 1999; 33: 1080–90.CrossRefGoogle ScholarPubMed
Reis, G, Marcovitz, PA, Leichtman, AB et al. Usefulness of dobutamine stress echocardiography in detecting coronary artery disease in end-stage renal disease. Am J Cardiol 1995; 75: 707–10.CrossRefGoogle ScholarPubMed
Tita, C, Karthikeyan, V, Stroe, A et al. Stress echocardiography for risk stratification in patients with end-stage renal disease undergoing renal transplantation. J Am Soc Echocardiogr 2008; 21: 321–6.CrossRefGoogle ScholarPubMed
Hase, H, Tsunoda, T, Tanaka, Y et al. Risk factors for de novo acute cardiac events in patients initiating hemodialysis with no previous cardiac symptom. Kidney Int 2006; 70: 1142–8.CrossRefGoogle Scholar
Siedlecki, A, Foushee, M, Curtis, JJ et al. The impact of left ventricular systolic dysfunction on survival after renal transplantation. Transplantation 2007; 84: 1610–17.CrossRefGoogle ScholarPubMed
Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br Med J 2002; 324(7329): 71–86.CrossRefGoogle Scholar
Greenberg, A.Diuretic complications. Am J Med Sci 2000; 319: 10–24.CrossRefGoogle ScholarPubMed
Inoue, M, Okajima, K, Itoh, K et al. Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. Kidney Int 1987; 32: 198–203.CrossRefGoogle ScholarPubMed
Akcicek, F, Yalniz, T, Basci, A et al. Diuretic effect of frusemide in patients with nephrotic syndrome: is it potentiated by intravenous albumin?Br Med J 1995; 310(6973): 162–3.CrossRefGoogle ScholarPubMed
Chalasani, N, Gorski, JC, Horlander, JC et al. Effects of albumin/furosemide mixtures on responses to furosemide in hypoalbuminemic patients. J Am Soc Nephrol 2001; 12: 1010–16.Google ScholarPubMed
Fliser, D, Zurbruggen, I, Mutschler, E et al. Coadministration of albumin and furosemide in patients with the nephrotic syndrome. Kidney Int 1999; 55: 629–34.CrossRefGoogle ScholarPubMed
Gentilini, P, Casini-Raggi, V, Di Fiore, G et al. Albumin improves the response to diuretics in patients with cirrhosis and ascites: results of a randomized, controlled trial. J Hepatol 1999; 30: 639–45.CrossRefGoogle ScholarPubMed
Brunkhorst, FM, Engel, C, Bloos, F et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358: 125–39.CrossRefGoogle ScholarPubMed
Bunn, F, Trivedi, D, Ashraf, S.Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev 2008; 1: CD001319.Google Scholar
Perel, P, Roberts, I.Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2007; 4: CD000567.Google Scholar
Schortgen, F, Girou, E, Deye, N et al. The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 2008; 34: 2157–68.CrossRefGoogle ScholarPubMed
Westphal, M, James, MF, Kozek-Langenecker, S et al. Hydroxyethyl starches: different products – different effects. Anesthesiology 2009; 111: 187–202.CrossRefGoogle ScholarPubMed
Auerbach, AD, Goldman, L.Beta-blockers and reduction of cardiac events in noncardiac surgery: scientific review. J Am Med Assoc 2002; 287: 1435–44.Google ScholarPubMed
Mangano, DT, Layug, EL, Wallace, A et al. Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group. N Engl J Med 1996; 335: 1713–20.CrossRefGoogle ScholarPubMed
Poldermans, D, Boersma, E, Bax, JJ et al. The effect of bisoprolol on perioperative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. Dutch Echocardiographic Cardiac Risk Evaluation Applying Stress Echocardiography Study Group. N Engl J Med 1999; 341: 1789–94.CrossRefGoogle ScholarPubMed
Devereaux, PJ, Beattie, WS, Choi, PT et al. How strong is the evidence for the use of perioperative beta blockers in non-cardiac surgery? Systematic review and meta-analysis of randomised controlled trials. Br Med J 2005; 331: 313–21.CrossRefGoogle ScholarPubMed
Juul, AB, Wetterslev, J, Gluud, C et al. Effect of perioperative beta blockade in patients with diabetes undergoing major non-cardiac surgery: randomised placebo controlled, blinded multicentre trial. Br Med J 2006; 332: 1482.CrossRefGoogle ScholarPubMed
Devereaux, PJ, Yang, H, Yusuf, S et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 2008; 371(9627): 1839–47.Google ScholarPubMed
Arora, P, Rajagopalam, S, Ranjan, R et al. Preoperative use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. Clin J Am Soc Nephrol 2008; 3: 1266–73.CrossRefGoogle ScholarPubMed
Comfere, T, Sprung, J, Kumar, MM et al. Angiotensin system inhibitors in a general surgical population. Anesth Analg 2005; 100: 636–44.CrossRefGoogle Scholar
Coriat, P, Richer, C, Douraki, T et al. Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology 1994; 81: 299–307.CrossRefGoogle ScholarPubMed
Raja, SG, Fida, N.Should angiotensin converting enzyme inhibitors/angiotensin II receptor antagonists be omitted before cardiac surgery to avoid postoperative vasodilation?Interact Cardiovasc Thorac Surg 2008; 7: 470–5.CrossRefGoogle ScholarPubMed
Marik, PE, Varon, J.Perioperative hypertension: a review of current and emerging therapeutic agents. J Clin Anesth 2009; 21: 220–9.CrossRefGoogle ScholarPubMed
Yee, J, Parasuraman, R, Narins, RG.Selective review of key perioperative renal-electrolyte disturbances in chronic renal failure patients. Chest 1999; 115 (5 Suppl): 149S–57S.CrossRefGoogle ScholarPubMed
Rindone, JP, Sloane, EP.Cyanide toxicity from sodium nitroprusside: risks and management. Ann Pharmacother 1992; 26: 515–19.CrossRefGoogle ScholarPubMed
Chang, TI, Paik, J, Greene, T et al. Intradialytic hypotension and vascular access thrombosis. J Am Soc Nephrol 2011; 22: 1526–33.Google ScholarPubMed
Burke, JF, Francos, GC.Surgery in the patient with acute or chronic renal failure. Med Clin North Am 1987; 71: 489–97.CrossRefGoogle ScholarPubMed
Bia, MJ, DeFronzo, RA.Extrarenal potassium homeostasis. Am J Physiol 1981; 240: F257–68.Google ScholarPubMed
Einhorn, LM, Zhan, M, Hsu, VD et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 2009; 169: 1156–62.CrossRefGoogle ScholarPubMed
Salem, MM, Rosa, RM, Batlle, DC.Extrarenal potassium tolerance in chronic renal failure: implications for the treatment of acute hyperkalemia. Am J Kidney Dis 1991; 18: 421–40.CrossRefGoogle ScholarPubMed
Martin, RS, Panese, S, Virginillo, M et al. Increased secretion of potassium in the rectum of humans with chronic renal failure. Am J Kidney Dis 1986; 8: 105–10.CrossRefGoogle ScholarPubMed
Ferrannini, E, Taddei, S, Santoro, D et al. Independent stimulation of glucose metabolism and Na+-K+ exchange by insulin in the human forearm. Am J Physiol 1988; 255: E953–8.Google ScholarPubMed
Allon, M, Takeshian, A, Shanklin, N.Effect of insulin-plus-glucose infusion with or without epinephrine on fasting hyperkalemia. Kidney Int 1993; 43: 212–17.CrossRefGoogle ScholarPubMed
Allon, M, Shanklin, N.Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am J Kidney Dis 1996; 28: 508–14.CrossRefGoogle ScholarPubMed
Blumberg, A, Weidmann, P, Shaw, S et al. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med 1988; 85: 507–12.CrossRefGoogle ScholarPubMed
Pirenne, J, Lledo-Garcia, E, Benedetti, E et al. Colon perforation after renal transplantation: a single-institution review. Clin Transplant 1997; 11: 88–93.Google ScholarPubMed
Sterns, RH, Rojas, M, Bernstein, P et al. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective?J Am Soc Nephrol 2010; 21: 733–5.CrossRefGoogle ScholarPubMed
Watson, M, Abbott, KC, Yuan, CM.Damned if you do, damned if you don't: potassium binding resins in hyperkalemia. Clin J Am Soc Nephrol 2010; 5: 1723–6.CrossRefGoogle Scholar
Cundy, T, Dissanayake, A.Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin Endocrinol (Oxf) 2008; 69: 338–41.CrossRefGoogle ScholarPubMed
Kuipers, MT, Thang, HD, Arntzenius, AB.Hypomagnesaemia due to use of proton pump inhibitors – a review. Neth J Med 2009; 67: 169–72.Google ScholarPubMed
Hoorn, EJ, van der Hoek, J, de Man, RA et al. A case series of proton pump inhibitor-induced hypomagnesemia. Am J Kidney Dis 2010; 56: 112–16.CrossRefGoogle ScholarPubMed
Van Der Klooster, JM, Van Der Wiel, HE, Van Saase, JL et al. Asystole during combination chemotherapy for non-Hodgkin's lymphoma: the acute tumor lysis syndrome. Neth J Med 2000; 56: 147–52.CrossRefGoogle ScholarPubMed
Levin, NW, Hoenich, NA.Consequences of hyperphosphatemia and elevated levels of the calcium-phosphorus product in dialysis patients. Curr Opin Nephrol Hypertens 2001; 10: 563–8.CrossRefGoogle ScholarPubMed
Schiller, LR, Santa Ana, CA, Sheikh, MS et al. Effect of the time of administration of calcium acetate on phosphorus binding. N Engl J Med 1989; 320: 1110–13.CrossRefGoogle ScholarPubMed
Sheikh, MS, Maguire, JA, Emmett, M et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest 1989; 83: 66–73.CrossRefGoogle ScholarPubMed
Cannata-Andia, JB, Fernandez-Martin, JL.The clinical impact of aluminium overload in renal failure. Nephrol Dial Transplant 2002; 17 (Suppl 2): 9–12.CrossRefGoogle ScholarPubMed
Molitoris, BA, Froment, DH, Mackenzie, TA et al. Citrate: a major factor in the toxicity of orally administered aluminum compounds. Kidney Int 1989; 36: 949–53.CrossRefGoogle Scholar
Kumar, VA, Yeun, JY, Vu, JT et al. Extended daily dialysis (EDD) rapidly reduces serum phosphate levels in intensive care unit (ICU) patients with acute renal failure (ARF). Am Soc Artif Internal Organs 2001; 47: 150.Google Scholar
Tan, HK, Bellomo, R, M'Pis, DA et al. Phosphatemic control during acute renal failure: intermittent hemodialysis versus continuous hemodiafiltration. Int J Artif Organs 2001; 24: 186–91.CrossRefGoogle ScholarPubMed
Crook, MA, Hally, V, Panteli, JV.The importance of the refeeding syndrome. Nutrition 2001; 17: 632–7.CrossRefGoogle ScholarPubMed
Hemstreet, BA.Use of sucralfate in renal failure. Ann Pharmacother 2001; 35: 360–4.CrossRefGoogle ScholarPubMed
Mechanick, JI, Brett, EM.Endocrine and metabolic issues in the management of the chronically critically ill patient. Crit Care Clin 2002; 18: 619–41, viii.CrossRefGoogle ScholarPubMed
Gallacher, SJ, Ralston, SH, Dryburgh, FJ et al. Immobilization-related hypercalcaemia – a possible novel mechanism and response to pamidronate. Postgrad Med J 1990; 66: 918–22.CrossRefGoogle ScholarPubMed
Cruz, DN, Perazella, MA.Biochemical aberrations in a dialysis patient following parathyroidectomy. Am J Kidney Dis 1997; 29: 759–62.CrossRefGoogle Scholar
Goyal, P, Puri, GD, Pandey, CK et al. Evaluation of induction doses of propofol: comparison between endstage renal disease and normal renal function patients. Anaesth Intensive Care 2002; 30: 584–7.Google ScholarPubMed
Mitchell, JH, Wildenthal, K, Johnson, RL. The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int 1972; 1: 375–89.CrossRefGoogle ScholarPubMed
Orchard, CH, Kentish, JC.Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 1990; 258: C967–81.CrossRefGoogle ScholarPubMed
Posner, JB, Plum, F.Spinal-fluid pH and neurologic symptoms in systemic acidosis. N Engl J Med 1967; 277: 605–13.CrossRefGoogle ScholarPubMed
Adrogue, HJ, Madias, NE.Management of life-threatening acid-base disorders. First of two parts. N Engl J Med 1998; 338: 26–34.CrossRefGoogle ScholarPubMed
Narins, RG, Cohen, JJ.Bicarbonate therapy for organic acidosis: the case for its continued use. Ann Intern Med 1987; 106: 615–18.CrossRefGoogle ScholarPubMed
Rose, BD, Post, TW.Metabolic acidosis. In Clinical Physiology of Acid–Base and Electrolyte Disorders. New York: McGraw Hill, 2001, pp. 578–646.Google Scholar
Holmdahl, MH, Wiklund, L, Wetterberg, T et al. The place of THAM in the management of acidemia in clinical practice. Acta Anaesthesiol Scand 2000; 44: 524–7.CrossRefGoogle ScholarPubMed
Hadimioglu, N, Saadawy, I, Saglam, T et al. The effect of different crystalloid solutions on acid-base balance and early kidney function after kidney transplantation. Anesth Analg 2008; 107: 264–9.CrossRefGoogle ScholarPubMed
Swartz, RD, Rubin, JE, Brown, RS et al. Correction of postoperative metabolic alkalosis and renal failure by hemodialysis. Ann Intern Med 1977; 86: 52–5.CrossRefGoogle ScholarPubMed
Hakim, RM, Levin, N.Malnutrition in hemodialysis patients. Am J Kidney Dis 1993; 21: 125–37.CrossRefGoogle ScholarPubMed
Lowrie, EG, Lew, NL.Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 1990; 15: 458–82.CrossRefGoogle ScholarPubMed
Don, BR, Kaysen, GA.Assessment of inflammation and nutrition in patients with end-stage renal disease. J Nephrol 2000; 13: 249–59.Google ScholarPubMed
Rocco, MV, Blumenkrantz, MJ.Nutrition. In Daugirdas, JT, Blake, PG, Ing, TS, eds. Handbook of Dialysis. Philadelphia: Little Brown & Co.; 2001, pp. 420–45.Google Scholar
National Kidney Foundation Dialysis Outcomes Quality Initiative. Clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis 2000; 35 (6 Suppl 2): S1–140.Google Scholar
Feinstein, EI, Kopple, JD, Silberman, H et al. Total parenteral nutrition with high or low nitrogen intakes in patients with acute renal failure. Kidney Int Suppl 1983; 16: S319–23.Google ScholarPubMed
Eschbach, JW, Adamson, JW.Anemia of end-stage renal disease (ESRD). Kidney Int 1985; 28: 1–5.CrossRefGoogle Scholar
Eschbach, JW, Egrie, JC, Downing, MR et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 1987; 316: 73–8.CrossRefGoogle ScholarPubMed
Besarab, A, Bolton, WK, Browne, JK et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998; 339: 584–90.CrossRefGoogle ScholarPubMed
Pfeffer, MA, Burdmann, EA, Chen, CY et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009; 361: 2019–32.CrossRefGoogle ScholarPubMed
Singh, AK, Szczech, L, Tang, KL et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 2006; 355: 2085–98.CrossRefGoogle ScholarPubMed
National Kidney Foundation Dialysis Outcomes Quality Initiative: Clinical practice guidelines for anemia of chronic kidney disease: update 2000. Am J Kidney Dis 2001; 37 (1 Suppl 1): S182–238.CrossRefGoogle Scholar
Eberst, ME, Berkowitz, LR.Hemostasis in renal disease: pathophysiology and management. Am J Med 1994; 96: 168–79.CrossRefGoogle ScholarPubMed
Escolar, G, Cases, A, Bastida, E et al. Uremic platelets have a functional defect affecting the interaction of von Willebrand factor with glycoprotein IIb-IIIa. Blood 1990; 76: 1336–40.Google ScholarPubMed
Koch, M, Gradaus, F, Schoebel, FC et al. Relevance of conventional cardiovascular risk factors for the prediction of coronary artery disease in diabetic patients on renal replacement therapy. Nephrol Dial Transplant 1997; 12: 1187–91.CrossRefGoogle ScholarPubMed
Rabelink, TJ, Zwaginga, JJ, Koomans, HA et al. Thrombosis and hemostasis in renal disease. Kidney Int 1994; 46: 287–96.CrossRefGoogle ScholarPubMed
Noris, M, Remuzzi, G.Uremic bleeding: closing the circle after 30 years of controversies?Blood 1999; 94: 2569–74.Google ScholarPubMed
Steiner, RW, Coggins, C, Carvalho, AC.Bleeding time in uremia: a useful test to assess clinical bleeding. Am J Hematol 1979; 7: 107–17.CrossRefGoogle ScholarPubMed
Lindsay, RM, Friesen, M, Aronstam, A et al. Improvement of platelet function by increased frequency of hemodialysis. Clin Nephrol 1978; 10: 67–70.Google ScholarPubMed
Hedges, SJ, Dehoney, SB, Hooper, JS et al. Evidence-based treatment recommendations for uremic bleeding. Nat Clin Pract Nephrol 2007; 3: 138–53.CrossRefGoogle ScholarPubMed
Mannucci, PM.Hemostatic drugs. N Engl J Med 1998; 339: 245–53.CrossRefGoogle ScholarPubMed
Vigano, G, Gaspari, F, Locatelli, M et al. Dose-effect and pharmacokinetics of estrogens given to correct bleeding time in uremia. Kidney Int 1988; 34: 853–8.CrossRefGoogle ScholarPubMed
Moschella, SL, Kay, J, Mackool, BT et al. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 35–2004. A 68-year-old man with end-stage renal disease and thickening of the skin. N Engl J Med 2004; 351: 2219–27.CrossRefGoogle Scholar
Joffe, P, Thomsen, HS, Meusel, M.Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol 1998; 5: 491–502.CrossRefGoogle ScholarPubMed
Mendoza, FA, Artlett, CM, Sandorfi, N et al. Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 2006; 35: 238–49.CrossRefGoogle ScholarPubMed
Cowper, SE, Su, LD, Bhawan, J et al. Nephrogenic fibrosing dermopathy. Am J Dermatopathol 2001; 23: 383–93.CrossRefGoogle ScholarPubMed
Perazella, MA.How should nephrologists approach gadolinium-based contrast imaging in patients with kidney disease?Clin J Am Soc Nephrol 2008; 3: 649–51.CrossRefGoogle ScholarPubMed
Grobner, T.Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?Nephrol Dial Transplant 2006; 21: 1104–8.CrossRefGoogle ScholarPubMed
Saitoh, T, Hayasaka, K, Tanaka, Y et al. Dialyzability of gadodiamide in hemodialysis patients. Radiat Med 2006; 24: 445–51.CrossRefGoogle ScholarPubMed
Miller, CF.Renal failure. In Breslow, MJ, Miller, CF, Rogers, MC, eds. Perioperative management. St. Louis: C.V. Mosby Co.; 1990, pp. 327–42.Google Scholar
Bihorac, A, Yavas, S, Subbiah, S et al. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg 2009; 249: 851–8.CrossRefGoogle ScholarPubMed
Chertow, GM, Lazarus, JM, Paganini, EP et al. Predictors of mortality and the provision of dialysis in patients with acute tubular necrosis. The Auriculin Anaritide Acute Renal Failure Study Group. J Am Soc Nephrol 1998; 9: 692–8.Google ScholarPubMed
Borthwick, E, Ferguson, A.Perioperative acute kidney injury: risk factors, recognition, management, and outcomes. Br Med J 2010; 341: c3365.CrossRefGoogle Scholar
Carvounis, CP, Nisar, S, Guro-Razuman, S.Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 2002; 62: 2223–9.CrossRefGoogle ScholarPubMed
Tsai, JJ, Yeun, JY, Kumar, VA et al. Comparison and interpretation of urinalysis performed by a nephrologist versus a hospital-based clinical laboratory. Am J Kidney Dis 2005; 46: 820–9.CrossRefGoogle ScholarPubMed
Bellomo, R, Ronco, C, Kellum, JA et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204–12.CrossRefGoogle ScholarPubMed
Mehta, RL, Kellum, JA, Shah, SV et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11: R31.CrossRefGoogle ScholarPubMed
Bagshaw, SM, George, C, Bellomo, R.A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol Dial Transplant 2008; 23: 1569–74.CrossRefGoogle ScholarPubMed
Devarajan, P.NGAL in acute kidney injury: from serendipity to utility. Am J Kidney Dis 2008; 52: 395–9.CrossRefGoogle ScholarPubMed
Rose, BD.Postischemic and postoperative acute tubular necrosis. In Rose, BD, ed. Up To Date, Vol. 10.3. Wellesley, MA: Up to Date; 2002, pp. 320–42.Google Scholar
Myers, BD, Miller, DC, Mehigan, JT et al. Nature of the renal injury following total renal ischemia in man. J Clin Invest 1984; 73: 329–41.CrossRefGoogle ScholarPubMed
Dawson, JL.Post-operative renal function in obstructive jaundice: effect of a mannitol diuresis. Br Med J 1965; 1: 82–6.CrossRefGoogle ScholarPubMed
Abelha, FJ, Botelho, M, Fernandes, V et al. Determinants of postoperative acute kidney injury. Crit Care 2009; 13: R79.CrossRefGoogle ScholarPubMed
Thakar, CV, Arrigain, S, Worley, S et al. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol 2005; 16: 162–8.CrossRefGoogle ScholarPubMed
Sajja, LR, Mannam, G, Chakravarthi, RM et al. Coronary artery bypass grafting with or without cardiopulmonary bypass in patients with preoperative non-dialysis dependent renal insufficiency: a randomized study. J Thorac Cardiovasc Surg 2007; 133: 378–88.CrossRefGoogle ScholarPubMed
Wardle, EN.Acute renal failure and multiorgan failure. Nephron 1994; 66: 380–5.CrossRefGoogle ScholarPubMed
Patrono, C, Dunn, MJ.The clinical significance of inhibition of renal prostaglandin synthesis. Kidney Int 1987; 32: 1–12.CrossRefGoogle ScholarPubMed
Perazella, MA, Eras, J.Are selective COX-2 inhibitors nephrotoxic?Am J Kidney Dis 2000; 35: 937–40.CrossRefGoogle ScholarPubMed
Auron, M, Harte, B, Kumar, A et al. Renin-angiotensin system antagonists in the perioperative setting: clinical consequences and recommendations for practice. Postgrad Med J 2011; 87: 472–81.CrossRefGoogle ScholarPubMed
Bakris, GL, Weir, MR.Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern?Arch Intern Med 2000; 160: 685–93.CrossRefGoogle ScholarPubMed
Oster, JR, Materson, BJ.Renal and electrolyte complications of congestive heart failure and effects of therapy with angiotensin-converting enzyme inhibitors. Arch Intern Med 1992; 152: 704–10.CrossRefGoogle ScholarPubMed
Humes, HD.Aminoglycoside nephrotoxicity. Kidney Int 1988; 33: 900–11.CrossRefGoogle ScholarPubMed
Meyer, RD.Risk factors and comparisons of clinical nephrotoxicity of aminoglycosides. Am J Med 1986; 80: 119–25.CrossRefGoogle ScholarPubMed
Moore, RD, Smith, CR, Lipsky, JJ et al. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med 1984; 100: 352–7.CrossRefGoogle ScholarPubMed
Zager, RA.Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab Invest 1989; 60: 619–29.Google ScholarPubMed
Zager, RA.Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int 1996; 49: 314–26.CrossRefGoogle ScholarPubMed
Don, B, Rodriguez, RA, Humphreys, MH.Diseases of the Kidney and Urinary Tract. Philadelphia, PA: Lippincott, Williams & Wilkins; 2001, pp. 1299–1326.Google Scholar
Bywaters, EG, Beall, D.Crush injuries with impairment of renal function. 1941. J Am Soc Nephrol 1998; 9: 322–32.Google ScholarPubMed
Better, OS, Stein, JH.Early management of shock and prophylaxis of acute renal failure in traumatic rhabdomyolysis. N Engl J Med 1990; 322(12): 825–9.Google ScholarPubMed
Zager, RA.Combined mannitol and deferoxamine therapy for myohemoglobinuric renal injury and oxidant tubular stress. Mechanistic and therapeutic implications. J Clin Invest 1992; 90(3): 711–19.CrossRefGoogle ScholarPubMed
Eneas, JF, Schoenfeld, PY, Humphreys, MH.The effect of infusion of mannitol-sodium bicarbonate on the clinical course of myoglobinuria. Arch Intern Med 1979; 139(7): 801–5.CrossRefGoogle ScholarPubMed
Barrett, BJ.Contrast nephrotoxicity. J Am Soc Nephrol 1994; 5(2): 125–37.Google ScholarPubMed
Solomon, R.Contrast-medium-induced acute renal failure. Kidney Int 1998; 53(1): 230–42.CrossRefGoogle ScholarPubMed
Morcos, SK, Thomsen, HS, Webb, JA.Dialysis and contrast media. Eur Radiol 2002; 12(12): 3026–30.Google ScholarPubMed
Aspelin, P, Aubry, P, Fransson, SG et al. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 2003; 348(6): 491–9.CrossRefGoogle ScholarPubMed
Rudnick, MR, Goldfarb, S, Wexler, L et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int 1995; 47(1): 254–61.CrossRefGoogle ScholarPubMed
Solomon, R, Werner, C, Mann, D et al. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med 1994; 331(21): 1416–20.CrossRefGoogle Scholar
Weisbord, SD, Palevsky, PM.Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 2008; 3(1): 273–80.CrossRefGoogle ScholarPubMed
Zagler, A, Azadpour, M, Mercado, C et al. N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J 2006; 151(1): 140–5.CrossRefGoogle ScholarPubMed
Pannu, N, Manns, B, Lee, H et al. Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney Int 2004; 65(4): 1366–74.CrossRefGoogle ScholarPubMed
Nallamothu, BK, Shojania, KG, Saint, S et al. Is acetylcysteine effective in preventing contrast-related nephropathy? A meta-analysis. Am J Med 2004; 117(12): 938–47.CrossRefGoogle ScholarPubMed
Marenzi, G, Assanelli, E, Marana, I et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 2006; 354(26): 2773–82.CrossRefGoogle ScholarPubMed
Zoungas, S, Ninomiya, T, Huxley, R et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 2009; 151(9): 631–8.CrossRefGoogle ScholarPubMed
Merten, GJ, Burgess, WP, Gray, LV et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. J Am Med Assoc 2004; 291(19): 2328–34.CrossRefGoogle ScholarPubMed
Diaz-Sandoval, LJ, Kosowsky, BD, Losordo, DW.Acetylcysteine to prevent angiography-related renal tissue injury (the APART trial). Am J Cardiol 2002; 89(3): 356–8.CrossRefGoogle Scholar
Tepel, M, van der Giet, M, Schwarzfeld, C et al. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 2000; 343(3): 180–4.CrossRefGoogle ScholarPubMed
Boccalandro, F, Amhad, M, Smalling, RW et al. Oral acetylcysteine does not protect renal function from moderate to high doses of intravenous radiographic contrast. Catheter Cardiovasc Interv 2003; 58(3): 336–41.CrossRefGoogle Scholar
Briguori, C, Manganelli, F, Scarpato, P et al. Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol 2002; 40(2): 298–303.CrossRefGoogle ScholarPubMed
Durham, JD, Caputo, C, Dokko, J et al. A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography. Kidney Int 2002; 62(6): 2202–7.CrossRefGoogle ScholarPubMed
Lassnigg, A, Donner, E, Grubhofer, G et al. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 2000; 11(1): 97–104.Google ScholarPubMed
Friedrich, JO, Adhikari, N, Herridge, MS et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 2005; 142(7): 510–24.CrossRefGoogle ScholarPubMed
Szerlip, HM.Renal-dose dopamine: fact and fiction. Ann Intern Med 1991; 115(2): 153–4.CrossRefGoogle ScholarPubMed
Landoni, G, Biondi-Zoccai, GG, Tumlin, JA et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis 2007; 49(1): 56–68.CrossRefGoogle ScholarPubMed
Nigwekar, SU, Hix, JK.The role of natriuretic peptide administration in cardiovascular surgery-associated renal dysfunction: a systematic review and meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth 2009; 23(2): 151–60.CrossRefGoogle ScholarPubMed
Finfer, S, Chittock, DR, Su, SY et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360(13): 1283–97.Google ScholarPubMed
Thomas, G, Rojas, MC, Epstein, SK et al. Insulin therapy and acute kidney injury in critically ill patients: a systematic review. Nephrol Dial Transplant 2007; 22(10): 2849–55.CrossRefGoogle ScholarPubMed
Molnar, AO, Coca, SG, Devereaux, PJ et al. Statin use associates with a lower incidence of acute kidney injury after major elective surgery. J Am Soc Nephrol 2011; 22(5): 939–46.CrossRefGoogle ScholarPubMed
Waikar, SS, Brunelli, SM.Peri-surgical statins lessen acute kidney injury. J Am Soc Nephrol 2011; 22(5): 797–9.CrossRefGoogle ScholarPubMed
Stallwood, MI, Grayson, AD, Mills, K et al. Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg 2004; 77(3): 968–72.CrossRefGoogle ScholarPubMed
Wijeysundera, DN, Beattie, WS, Djaiani, G et al. Off-pump coronary artery surgery for reducing mortality and morbidity: meta-analysis of randomized and observational studies. J Am Coll Cardiol 2005; 46(5): 872–82.CrossRefGoogle ScholarPubMed
Myers, BD, Moran, SM.Hemodynamically mediated acute renal failure. N Engl J Med 1986; 314(2): 97–105.Google ScholarPubMed
Schulman, G, Fogo, A, Gung, A et al. Complement activation retards resolution of acute ischemic renal failure in the rat. Kidney Int 1991; 40(6): 1069–74.CrossRefGoogle ScholarPubMed
Hakim, RM, Wingard, RL, Parker, RA.Effect of the dialysis membrane in the treatment of patients with acute renal failure. N Engl J Med 1994; 331(20): 1338–42.CrossRefGoogle ScholarPubMed
Schiffl, H, Lang, SM, Konig, A et al. Biocompatible membranes in acute renal failure: prospective case-controlled study. Lancet 1994; 344(8922): 570–2.CrossRefGoogle ScholarPubMed
Hertel, J, Keep, DM, Caruana, RJ.Anticoagulation. In Daugirdas, JT, Blake, PG, Ing, TS, eds. Handbook of Dialysis. Philadelphia, PA: Lippincott, Williams & Wilkins; 2001, pp. 182–98.Google Scholar
Troppmann, C, Pierce, JL, Gandhi, MM et al. Higher surgical wound complication rates with sirolimus immunosuppression after kidney transplantation: a matched-pair pilot study. Transplantation 2003; 76(2): 426–9.CrossRefGoogle ScholarPubMed
Connolly, SJ, Kates, RE.Clinical pharmacokinetics of N-acetylprocainamide. Clin Pharmacokinet 1982; 7(3): 206–20.CrossRefGoogle ScholarPubMed
Vlasses, PH, Ferguson, RK, Rocci, ML et al. Lethal accumulation of procainamide metabolite in severe renal insufficiency. Am J Nephrol 1986; 6(2): 112–16.CrossRefGoogle ScholarPubMed
Maton, PN, Burton, ME.Antacids revisited: a review of their clinical pharmacology and recommended therapeutic use. Drugs 1999; 57(6): 855–70.CrossRefGoogle ScholarPubMed
Pruchnicki, MC, Coyle, JD, Hoshaw-Woodard, S et al. Effect of phosphate binders on supplemental iron absorption in healthy subjects. J Clin Pharmacol 2002; 42(10): 1171–6.CrossRefGoogle ScholarPubMed
Cheng, JW, Charland, SL, Shaw, LM et al. Is the volume of distribution of digoxin reduced in patients with renal dysfunction? Determining digoxin pharmacokinetics by fluorescence polarization immunoassay. Pharmacotherapy 1997; 17(3): 584–90.Google ScholarPubMed
Borga, O, Hoppel, C, Odar-Cederlof, I et al. Plasma levels and renal excretion of phenytoin and its metabolites in patients with renal failure. Clin Pharmacol Ther 1979; 26(3): 306–14.CrossRefGoogle ScholarPubMed
Levey, AS, Bosch, JP, Lewis, JB et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in Renal Disease Study Group. Ann Intern Med 1999; 130(6): 461–70.CrossRefGoogle ScholarPubMed
Hu, KT, Matayoshi, A, Stevenson, FT.Calculation of the estimated creatinine clearance in avoiding drug dosing errors in the older patient. Am J Med Sci 2001; 322(3): 133–6.CrossRefGoogle ScholarPubMed
Cranshaw, J, Holland, D.Anaesthesia for patients with renal impairment. Br J Hosp Med 1996; 55(4): 171–5.Google ScholarPubMed
Sladen, RN.Anesthetic considerations for the patient with renal failure. Anesthesiol Clin North America 2000; 18(4): 863–82.CrossRefGoogle ScholarPubMed
Conzen, PF, Nuscheler, M, Melotte, A et al. Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or enflurane. Anesth Analg 1995; 81(3): 569–75.Google ScholarPubMed
Nishimori, A, Tanaka, K, Ueno, K et al. Effects of sevoflurane anaesthesia on renal function. J Int Med Res 1997; 25(2): 87–91.CrossRefGoogle ScholarPubMed
Litz, RJ, Hubler, M, Lorenz, W et al. Renal responses to desflurane and isoflurane in patients with renal insufficiency. Anesthesiology 2002; 97(5): 1133–6.CrossRefGoogle ScholarPubMed
Roberts, RJ, Barletta, JF, Fong, JJ et al. Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Crit Care 2009; 13(5): R169.CrossRefGoogle ScholarPubMed
Beathard, GA, Urbanes, A, Litchfield, T et al. The risk of sedation/analgesia in hemodialysis patients undergoing interventional procedures. Semin Dial 2011; 24(1): 97–103.CrossRefGoogle ScholarPubMed
Brown, JH, Vites, NP, Testa, HJ et al. Value of thallium myocardial imaging in the prediction of future cardiovascular events in patients with end-stage renal failure. Nephrol Dial Transplant 1993; 8(5): 433–7.Google ScholarPubMed
Dahan, M, Viron, BM, Faraggi, M et al. Diagnostic accuracy and prognostic value of combined dipyridamole-exercise thallium imaging in hemodialysis patients. Kidney Int 1998; 54(1): 255–62.CrossRefGoogle ScholarPubMed
Camp, AD, Garvin, PJ, Hoff, J et al. Prognostic value of intravenous dipyridamole thallium imaging in patients with diabetes mellitus considered for renal transplantation. Am J Cardiol 1990; 65(22): 1459–63.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×