Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T06:24:24.470Z Has data issue: false hasContentIssue false

13 - Advanced MHD Turbulence

from Part IV - Turbulence

Published online by Cambridge University Press:  13 October 2016

Sébastien Galtier
Affiliation:
École Polytechnique, Paris
Get access

Summary

In its primitive form the Kolmogorov theory states that the four-fifths law can be generalized to higher-order structure functions according to relation (11.33) by assuming self-similarity. Experiments and numerical simulations clearly show a discrepancy from this prediction (see Figure 11.10): this is what is commonly called intermittency. Even if intermittency remains a still poorly understood property of turbulence because it still challenges any attempt at a rigorous analytical description from first principles (i.e. the Navier–Stokes equations), several models have been proposed to reproduce the statistical measurements, of which the simplest is probably the fractal model, also called the β model, which was introduced in 1978 (Frisch et al., 1978). As we shall see, this model is based on the idea of a fractal (incompressible) cascade and is therefore inherently a self-similar model. However, because the structure-function exponents are not those predicted by the Kolmogorov theory, one speaks of intermittency and anomalous exponents. Refined models have also been proposed, and we will present in this chapter the two most famous models: the log-normal and log-Poisson models.

Intermittency

Fractals and Multi-fractals

The idea underlying the β fractal model is Richardson's cascade (Figure 11.7): at each step of the cascade the number of children vortices is chosen so that the volume (or the surface in the two-dimensional case) occupied by these eddies decreases by a factor β (0 < β < 1) compared with the volume (or surface) of the parent vortex. The β factor is a parameter less than one of the model to reflect the fact that the filling factor varies according to the scale considered: the smallest eddies occupy less space than the largest.

We define by ln the discrete scales of our system: the fractal cascade is characterized by jumps from the scale ln to the scale ln+1.We show an example of a fractal cascade in Figure 13.1: at each step of the cascade the elementary scale is divided by two.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Advanced MHD Turbulence
  • Sébastien Galtier, École Polytechnique, Paris
  • Book: Introduction to Modern Magnetohydrodynamics
  • Online publication: 13 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316665961.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Advanced MHD Turbulence
  • Sébastien Galtier, École Polytechnique, Paris
  • Book: Introduction to Modern Magnetohydrodynamics
  • Online publication: 13 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316665961.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Advanced MHD Turbulence
  • Sébastien Galtier, École Polytechnique, Paris
  • Book: Introduction to Modern Magnetohydrodynamics
  • Online publication: 13 October 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316665961.017
Available formats
×