Skip to main content Accessibility help
×
  • Cited by 53
Publisher:
Cambridge University Press
Online publication date:
October 2016
Print publication year:
2016
Online ISBN:
9781316665961

Book description

Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.

Reviews

'With an appealing combination of background material and carefully selected mathematics, Galtier succeeds in presenting the flavor of each topic. His approach manages to whet readers’ appetites without overwhelming them with lengthy derivations or excessive technicalities. The manageable level of detail and the modest length of the book make it suitable as an accompaniment to a graduate lecture course, which is indeed how the text originated. Particularly noteworthy is the inclusion of material on the Hall effect, which reflects a growing interest in that phenomenon in the context of MHD … Galtier’s attractive and concise volume joins several excellent modern introductory textbooks with somewhat different styles and emphases. … I would recommend Introduction to Modern Magnetohydrodynamics to students - especially graduate students - learning the basics of this exciting field.'

Gordon Ogilvie Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abramenko, V. I. 2005. Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J., 629, 1141–1149.
Abramenko, V. I., Yurchyshyn, V. B., Wang, H., Spirock, T. J., and Goode, P. R. 2002. Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the Sun. Astrophys. J., 577, 487–495.
Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., and Maksimovic, M. 2012. Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J., 760, 121.
Alfvén, H. 1942. Existence of electromagnetic–hydrodynamic waves. Nature, 150, 405–406.
Alfvén, H. 1942. On the existence of electromagnetic–hydrodynamic waves. Ark. Mat. Astron. och Fys., 29, 1–7.
Allen, T. K., Baker, W. R., Pyle, R. V., and Wilcox, J. M. 1959. Experimental generation of plasma Alfvén waves. Phys. Rev. Lett., 2, 383–384.
Antonia, R. A., and Burattini, P. 2006. Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech., 550, 175–184.
Antonia, R. A., Ould-Rouis, M., Anselmet, F., and Zhu, Y. 1997. Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech., 332, 395–409.
Arzoumanian, D., André, P., Didelon, P. et al. 2011. Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys., 529, L6.
Aubourg, Q., and Mordant, N. 2015. Nonlocal resonances in weak turbulence of gravity– capillary waves. Phys. Rev. Lett., 114, 144501.
Aulanier, G., DeLuca, E. E., Antiochos, S. K., McMullen, R. A., and Golub, L. 2000. The topology and evolution of the Bastille Day flare. Astrophys. J., 540, 1126–1142.
Aulanier, G., Pariat, E., Démoulin, P., and DeVore, C. R. 2006. Slip-running reconnection in quasi-separatrix layers. Sol. Phys., 238, 347–376.
Aunai, N., Belmont, G., and Smets, R. 2011. Ion acceleration in antiparallel collisionless magnetic reconnection: Kinetic and fluid aspects. Comptes Rendus Phys., 12, 141–150.
Balbus, S. A., and Hawley, J. F. 1991. A powerful local shear instability in weakly magnetized disks. I – Linear analysis. Astrophys. J., 376, 214–233.
Banerjee, S., and Galtier, S. 2013. Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E, 87(1), 013019.
Baumjohann, W., and Treumann, R. A. 1996. Basic Space Plasma Physics. Imperial College Press.
Belmont, G., Grappin, R., Mottez, F., Pantellini, F., and Pelletier, G. 2013. Collisionless Plasmas in Astrophysics. Wiley.
Benney, J., and Newell, A. C. 1966. Random wave closures. Studies Appl. Math., 48, 29–53.
Beresnyak, A. 2011. Spectral slope and Kolmogorov constant of MHD turbulence. Phys. Rev. Lett., 106(7), 075001.
Berger, M. A., and Field, G. B. 1984. The topological properties of magnetic helicity. J. Fluid Mech., 147, 133–148.
Berhanu, M., Monchaux, R., Fauve, S. et al. 2007. Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett., 77, 59001.
Bewley, G. P., Paoletti, M. S., Sreenivasan, K. R., and Lathrop, D. P. 2008. Characterization of reconnecting vortices in superfluid helium. Proc. Nat. Acad. Sci., 105, 13707–13710.
Bhattacharjee, A. 2004. Impulsive magnetic reconnection in the Earth's magnetotail and the solar corona. Ann. Rev. Astron. Astrophys., 42, 365–384.
Bigot, B., Galtier, S., and Politano, H. 2008a. An anisotropic turbulent model for solar coronal heating. Astron. Astrophys., 490, 325–337.
Bigot, B., Galtier, S., and Politano, H. 2008b. Development of anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Rev. E, 78(6), 066301.
Biskamp, D. 1986. Magnetic reconnection via current sheets. Phys. Fluids, 29, 1520– 1531.
Biskamp, D. 2000. Magnetic Reconnection in Plasmas. Cambridge University Press.
Biskamp, D. 2003. Magnetohydrodynamic Turbulence. Cambridge University Press.
Biskamp, D., Schwarz, E., and Drake, J. F. 1996. Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett., 76, 1264–1267.
Boldyrev, S. 2006. Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett., 96(11), 115002.
Boltzmann, L. 1872. Weitere Studien über dasWärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, 275–370.
Bostick, W. H., and Levine, M. A. 1952. Experimental demonstration in the laboratory of the existence of magneto-hydrodynamic waves in ionized helium. Phys. Rev., 87, 671–671.
Braginskii, S. I. 1965. Transport processes in a plasma. Rev. Plasma Phys., 1, 205–311.
Brandenburg, A., and Subramanian, K. 2005. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 417, 1–209.
Buchlin, E., and Velli, M. 2007. Shell models of reduced MHD turbulence and the heating of solar coronal loops. Astrophys. J., 662, 701–714.
BullardSir, E. 1955. The stability of a homopolar dynamo. Proc. Cambridge Phil. Soc., 51, 744–760.
Busse, F. H., and Wicht, J. 1992. A simple dynamo caused by conductivity variations. Geophys. Astrophys. Fluid Dyn., 64, 135–144.
Campagne, A., Gallet, B., Moisy, F., and Cortet, P.-P. 2015. Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment. Phys. Rev. E, 91(4), 043016.
Canou, A., and Amari, T. 2010. A twisted flux rope as the magnetic structure of a filament in Active Region 10953 observed by Hinode. Astrophys. J., 715, 1566–1574.
Carbone, V., Bruno, R., Sorriso-Valvo, L., and Lepreti, F. 2004. Intermittency of magnetic turbulence in slow solar wind. Plan. Space Sci., 52, 953–956.
Chabrier, G., and Hennebelle, P. 2011. Dimensional argument for the impact of turbulent support on the stellar initial mass function. Astron. Astrophys., 534, A106.
Chandran, B. D. G. 2010. Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J., 720, 548–554.
Chandrasekhar, S. 1960. The stability of non-dissipative Couette flow in hydromagnetics. Proc. Nat. Acad. Sci., 46, 253–257.
Chapman, S. 1931. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 26–45.
Cho, J., and Vishniac, E. T. 2000. The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J., 539, 273–282.
Clark, di Leoni, P., Cobelli, P. J., and Mininni, P. D. 2014. Wave turbulence in shallow water models. Phys. Rev. E, 89(6), 063025.
Cook, A. E., and Roberts, P. H. 1970. The Rikitake two-disc dynamo system. Proc. Camb. Phil. Soc., 68, 547.
Cooper, C. M., Wallace, J., Brookhart, M. et al. 2014. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics. Phys. Plasmas, 21(1), 013505.
Cowling, T. G. 1933. The magnetic field of sunspots. Month. Not. Roy. Astron. Soc., 94, 39–48.
Crémer, P., and Alemany, A. 1981. Aspects expérimentaux du brassage électromagnétique en creuset. J. Méc. Appl., 5, 37–50.
Daughton, W., Roytershteyn, V., Albright, B. J. et al. 2009. Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett., 103(6), 065004.
Davidson, P. A. 2001. An Introduction to Magnetohydrodynamics. Cambridge University Press.
Davidson, P. A. 2004. Turbulence: An Introduction for Scientists and Engineers. Cambridge University Press.
De Pontieu, B.,McIntosh, S. W., Carlsson, M. et al. 2007. Chromospheric Alfvénic waves strong enough to power the solar wind. Science, 318, 1574–1577.
Diamond, P. H., Itoh, S.-I., and Itoh, K. 2010. Modern Plasma Physics. Cambridge University Press.
Dubrulle, B. 1994. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett., 73, 959–962.
Elsässer, W. M. 1950. The hydromagnetic equations. Phys. Rev., 79, 183–183.
FalconÉ, , Laroche, C., and Fauve, S. 2007. Observation of gravity-capillary wave turbulence. Phys. Rev. Lett., 98(9), 094503.
Falthammar, C. 2007. The discovery of magnetohydrodynamic waves. J. Atmos. Solar– Terrestrial Phys., 69, 1604–1608.
Ferreira, J. 1997. Magnetically-driven jets from Keplerian accretion discs. Astron. Astrophys., 319, 340–359.
Feynman, R. P., Leighton, R. B., and Sands, M. 1964. The Feynman Lectures on Physics. Mainly Electromagnetism and Matter. Volume 2. Addison-Wesley Publishing Company.
Frisch, U. 1995. Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press.
Frisch, U., Pouquet, A., Leorat, J., and Mazure, A. 1975. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech., 68, 769–778.
Frisch, U., Sulem, P.-L., and Nelkin, M. 1978. A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech., 87, 719–736.
Gailitis, A., Lielausis, O., Dement'ev, S. et al. 2000. Detection of a flow induced magnetic field eigenmode in the Riga Dynamo Facility. Phys. Rev. Lett., 84, 4365–4368.
Galanti, B., and Tsinober, A. 2004. Is turbulence ergodic? Phys. Lett. A, 330, 173–180.
Galtier, S. 2006. Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys., 72, 721–769.
Galtier, S. 2008. Von Kármán–Howarth equations for Hall magnetohydrodynamic flows. Phys. Rev. E, 77(1), 015302.
Galtier, S. 2012. Kolmogorov vectorial law for solar wind turbulence. Astrophys. J., 746, 184.
Galtier, S. 2014. Weak turbulence theory for rotating magnetohydrodynamics and planetary flows. J. Fluid Mech., 757, 114–154.
Galtier, S., and Banerjee, S. 2011. Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett., 107(13), 134501.
Galtier, S., Politano, H., and Pouquet, A. 1997. Self-similar energy decay in magnetohydrodynamic turbulence. Phys. Rev. Lett., 79, 2807–2810.
Galtier, S., Nazarenko, S. V., Newell, A. C., and Pouquet, A. 2000. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys., 63, 447–488.
Galtier, S., Pouquet, A., and Mangeney, A. 2005. On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence. Phys. Plasmas, 12(9), 092310.
Glatzmaier, G. A., and Roberts, P. H. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377(Sept.), 203–209.
Goedbloed, J. P., Keppens, R., and Poedts, S. 2010. Advanced Magnetohydrodynamics. Cambridge University Press.
Goldreich, P., and Julian, W. H. 1969. Pulsar electrodynamics. Astrophys. J., 157, 869–880.
Goldreich, P., and Sridhar, S. 1995. Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys. J., 438, 763–775.
Grappin, R., Frisch, U., Pouquet, A., and Leorat, J. 1982. Alfvénic fluctuations as asymptotic states of MHD turbulence. Astron. Astrophys., 105, 6–14.
Grauer, R., Krug, J., and Marliani, C. 1994. Scaling of high-order structure functions in magnetohydrodynamic turbulence. Phys. Lett. A, 195, 335–338.
Haines, M. G., Lepell, P. D., Coverdale, C. A. et al. 2006. Ion viscous heating in a magnetohydrodynamically unstable Z Pinch at over 2×109 kelvin. Phys. Rev. Lett., 96, 075003.
Heisenberg, W. 1948. Zur statistischen Theorie der Turbulenz. Z. Phys., 124, 628–657.
Heyer, M. H., and Brunt, C. M. 2004. The universality of turbulence in galactic molecular clouds. Astrophys. J., 615, L45–L48.
Heyvaerts, J., and Priest, E. R. 1983. Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys., 117, 220–234.
Higdon, J. C. 1984. Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. I – Model and astrophysical sites. Astrophys. J., 285, 109–123.
Horbury, T. S., and Balogh, A. 1997. Structure function measurements of the intermittent MHD turbulent cascade. Nonlin. Proc. Geophys., 4, 185–199.
Hunana, P., Laveder, D., Passot, T., Sulem, P. L., and Borgogno, D. 2011. Reduction of compressibility and parallel transfer by Landau damping in turbulent magnetized plasmas. Astrophys. J., 743, 128.
Iroshnikov, R. S. 1964. Turbulence of a conducting fluid in a strong magnetic field. Soviet Astron., 7, 566–571.
Ji, H., Yamada, M., Hsu, S. et al. 1999. Magnetic reconnection with Sweet–Parker characteristics in two-dimensional laboratory plasmas. Phys. Plasmas, 6, 1743– 1750.
Kiyani, K. H., Chapman, S. C., Khotyaintsev, Y. V., Dunlop, M. W., and Sahraoui, F. 2009. Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett., 103, 075006.
Kiyani, K. H., Osman, K. T., and Chapman, S. C. 2015. Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Phil. Trans. R. Soc. Lond. A, 373(2041), 1–10.
Kolmogorov, A. N. 1941. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 16–18.
Kolmogorov, A. N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 82–85.
Kraichnan, R. H. 1958. Irreversible statistical mechanics of incompressible hydromagnetic turbulence. Phys. Rev., 109, 1407–1422.
Kraichnan, R. H. 1965. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids, 8, 1385–1387.
Kraichnan, R. H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417–1423.
Kritsuk, A. G., Norman, M. L., Padoan, P., and Wagner, R. 2007. The statistics of supersonic isothermal turbulence. Astrophys. J., 665, 416–431.
Kruskal, M., and Schwarzschild, M. 1954. Some instabilities of a completely ionized plasma. R. Soc. Lond. Proc. A, 223, 348–360.
Landau, L. D. 1946. On the vibrations of the electronic plasma. J. Phys. USSR, 10, 25–34.
Langmuir, I. 1928. Oscillations in ionized gases. Proc. Nat. Acad. Sci., 14, 627.
Lehnert, B. 1954. Magneto-hydrodynamic waves in liquid sodium. Phys. Rev., 94, 815–824.
Leith, C. E. 1969. Diffusion approximation to spectral transfer in homogeneous turbulence. Phys. Fluids, 12, 285.
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
Lundquist, S. 1949. Experimental investigations of magneto-hydrodynamic waves. Phys. Rev., 76, 1805–1809.
Luo, Q. Y., and Wu, D. J. 2010. Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. Lett., 714, L138–L141.
Mandt, M. E., Denton, R. E., and Drake, J. F. 1994. Transition to whistler mediated magnetic reconnection. Geophys. Res. Lett., 21, 73–76.
Maxwell, J. C. 1873. A Treatise on Electricity and Magnetism. Clarendon Press.
Meyrand, R., and Galtier, S. 2012. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence. Phys. Rev. Lett., 109, 194501.
Meyrand, R., and Galtier, S. 2013. Anomalous spectrum in electron magnetohydrodynamic turbulence. Phys. Rev. Lett., 111(26), 264501.
Meyrand, R., Kiyani, K. H., and Galtier, S. 2015. Weak magnetohydrodynamic turbulence and intermittency. J. Fluid Mech. Rapids, 770, R1.
Mininni, P. D., Gómez, D. O., and Mahajan, S. M. 2005. Direct simulations of helical Hall–MHD turbulence and dynamo action. Astrophys. J., 619, 1019–1027.
Moffatt, H. K. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech., 35, 117–129.
Moffatt, H. K. 1970. Dynamo action associated with random inertial waves in a rotating conducting fluid. J. Fluid Mech., 44, 705–719.
Moffatt, H. K. 1978. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Monchaux, R., Berhanu, M., Bourgoin, M. et al. 2007. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett., 98, 044502.
Mouhot, C., and Villani, C. 2010. Landau damping. J. Math. Phys., 51, 015204.
Mozer, F. S., Bale, S. D., and Phan, T. D. 2002. Evidence of diffusion regions at a subsolar magnetopause crossing. Phys. Rev. Lett., 89(1), 015002.
Müller, W.-C. 2009. Magnetohydrodynamic turbulence. Pages 223–254 of Hillebrandt, W., and Kupka, F. (eds.), Interdisciplinary Aspects of Turbulence. Springer Verlag.
Münch, G. 1958. Internal motions in the Orion nebula. Rev. Mod. Phys., 30, 1035–1041.
Nataf, H.-C., and Gagniére, N. 2008. On the peculiar nature of turbulence in planetary dynamos. Comptes Rendus Phys., 9, 702–710.
Nazarenko, S. 2011. Wave Turbulence. Springer Verlag.
Noether, E. 1918. Invariante variationsprobleme. Nachr. König. Gesellsch. Wiss. Göttingen, Math. Phys. Klasse, 1, 235–237.
Nore, C., Brachet, M. E., Politano, H., and Pouquet, A. 1997. Dynamo action in the Taylor–Green vortex near threshold. Phys. Plasmas, 4, 1–3.
Orszag, S. A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363–386.
Oughton, S., Priest, E. R., and Matthaeus, W. H. 1994. The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech., 280, 95–117.
Paret, J., and Tabeling, P. 1998. Intermittency in the two-dimensional inverse cascade of energy: Experimental observations. Phys. Fluids, 10, 3126–3136.
Parker, E. N. 1957. Sweet's mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res., 62, 509–520.
Parker, E. N. 1958. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J., 128, 664–676.
Perez, J. C., and Boldyrev, S. 2008. On weak and strong magnetohydrodynamic turbulence. Astrophys. J. Lett., 672, L61–L64.
Pétrélis, F., Fauve, S., Dormy, E., and Valet, J.-P. 2009. Simple mechanism for reversals of Earth's magnetic field. Phys. Rev. Lett., 102(14), 144503.
Petschek, H. E. 1964. Magnetic field annihilation. NASA Special Publication, 50, 425.
Plunian, F., Stepanov, R., and Frick, P. 2013. Shell models of magnetohydrodynamic turbulence. Phys. Rep., 523, 1–60.
Podesta, J. J., Roberts, D. A., and Goldstein, M. L. 2007. Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J., 664, 543–548.
Poincaré, H. 1889. Sur le probléme des trois corps et les équations de la dynamique. Text presented to the Swedish Royal Academy.
Politano, H., and Pouquet, A. 1998. Von Kármán–Howarth equation for MHD and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E, 57, R21–R24.
Ponomarenko, Y. B. 1973. Theory of the hydromagnetic generator. J. Appl. Mech. Tech. Phys., 14, 775–778.
Ponty, Y., and Plunian, F. 2011. Transition from large-scale to small-scale dynamo. Phys. Rev. Lett., 106(15), 154502.
Pouquet, A., Frisch, U., and Leorat, J. 1976. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech., 77, 321–354.
Priest, E. 2014. Magnetohydrodynamics of the Sun. Cambridge University Press.
Ravelet, F., Berhanu, M., Monchaux, R. et al. 2008. Chaotic dynamos generated by a turbulent flow of liquid sodium. Phys. Rev. Lett., 101(7), 074502.
Richardson, L. F. 1922. Weather Predictions by Numerical Process. Cambridge University Press.
Rikitake, T. 1958. Oscillations of a system of disk dynamos. Proc. Cambridge Phil. Soc., 54, 89.
Roberts, G. O. 1970. Spatially periodic dynamos. R. Soc. Lond. Phil. Trans. Series A, 266, 535–558.
Rogers, B. N., Denton, R. E., Drake, J. F., and Shay, M. A. 2001. Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett., 87, 195004.
Saddoughi, S. G., and Veeravalli, S. V. 1994. Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech., 268, 333–372.
Saur, J., Politano, H., Pouquet, A., and Matthaeus, W. H. 2002. Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter. Astron. Astrophys., 386, 699–708.
Schekochihin, A. A., Cowley, S. C., Dorland, W. et al. 2009. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl., 182, 310–377.
Schmidt, W., Federrath, C., and Klessen, R. 2008. Is the scaling of supersonic turbulence universal? Phys. Rev. Let., 101(19), 194505.
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A., and Dmitruk, P. 2009. Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett., 102(11), 115003.
She, Z.-S., and Leveque, E. 1994. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett., 72, 336–339.
Shebalin, J. V., Matthaeus, W. H., and Montgomery, D. 1983. Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys., 29, 525–547.
Shrira, V., and Nazarenko, S. (eds.) 2013. Advances inWave Turbulence. World Scientific.
Sorriso-Valvo, L., Marino, R., Carbone, V. et al. 2007. Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett., 99(11), 115001.
Spitzer, L. 1962. Physics of Fully Ionized Gases. Interscience.
Steenbeck, M., Krause, F., and Rädler, K.-H. 1966. A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion. Z. Natur., 21, 369–376.
Stieglitz, R., and Müller, U. 2001. Experimental demonstration of a homogeneous twoscale dynamo. Phys. Fluids, 13, 561–564.
Strauss, H. R. 1976. Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids, 19, 134–140.
Sweet, P. A. 1958. The neutral point theory of solar flares. Pages 123–134 of Lehnert, B. (ed), Electromagnetic Phenomena in Cosmical Physics. IAU Symposium, vol. 6.
Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., and Bono, R. K. 2015. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349(6247), 521–524.
Thomson, J. J. 1897. Cathode rays. The Electrician, 39, 104–109.
Turner, L. 1986. Hall effects on magnetic relaxation. IEEE Trans. Plasma Sci., 14, 849–857.
Velikhov, E. P. 1959. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. J. Exp. Theor. Phys., 9(5), 995–998.
Vermare, L., Gürcan, Ö. D., Hennequin, P. et al. 2011. Wavenumber spectrum of microturbulence in tokamak plasmas. Comptes Rendus Phys., 12, 115–122.
Vlasov, A. A. 1938. On vibrational properties of an electron gas. J. Exp. Theor. Phys., 8, 291–318.
von Kármán, T., and Howarth, L. 1938. On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A, 164, 192–215.
Woltjer, L. 1958. A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci., 44, 489–491.
Yamada, M., Ren, Y., Ji, H. et al. 2006. Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas, 13(5), 052119.
Yamada, M., Kulsrud, R., and Ji, H. 2010. Magnetic reconnection. Rev. Mod. Phys., 82, 603–664.
Yokoyama, N., and Takaoka, M. 2014. Identification of a separation wave number between weak and strong turbulence spectra for a vibrating plate. Phys. Rev. E, 89, 012909.
Zakharov, V. E., L'vov, V. S., and Falkovich, G. 1992. Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer Verlag.
Zakharov, V. E. 1965. Weak turbulence in media with a decay spectrum. J. Appl. Mech. Tech. Phys., 6, 22–24.
Zank, G. P., and Matthaeus, W. H. 1992. The equations of reduced magnetohydrodynamics. J. Plasma Phys., 48, 85.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.