Skip to main content Accessibility help
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-14T18:18:19.488Z Has data issue: false hasContentIssue false

8 - The Somatic System

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
University of Chicago
Louis G. Tassinary
Texas A & M University
Gary G. Berntson
Ohio State University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abbs, J. H., Gracco, V. L., & Blair, C. (1984). Functional muscle partitioning during voluntary movement: facial muscle activity for speech. Experimental Neurology, 85: 469479.Google Scholar
Adrian, E. D. & Bronk, D. W. (1929). The discharge of impulses in motor nerve fibers. Part II: the frequency of discharge in reflex and voluntary contractions. Journal of Physiology, 67: 119151.Google Scholar
Alaoui-Ismaïli, O., Vernet-Maury, E., Dittmar, A., Delhomme, G., & Chanel, J. (1997). Odor hedonics: connection with emotional response estimated by autonomic parameters. Chemical Senses, 22: 237248.Google Scholar
Alexander, A. B. & Smith, D. D. (1979). Clinical applications of EMG biofeedback. In Gatchel, R. I. & Price, K. P. (eds.), Clinical Applications of Biofeedback: Appraisal and Status (pp. 112133). New York: Pergamon.Google Scholar
Alius, M. G., Pane-Farre, C. A., Low, A., & Hamm, A. O. (2015). Modulation of the blink reflex and P3 component of the startle response during an interoceptive challenge. Psychophysiology, 52: 140148.Google Scholar
Allain, S., Carbonnell, L., Burle, B., Hasbroucq, T., & Vidal, F. (2004). On-line executive control: an electromyographic study. Psychophysiology, 41: 113116.CrossRefGoogle ScholarPubMed
Allport, G. W. (1968). The historical background of modern social psychology. In Lindzey, G. & Aronson, E. (eds.), The Handbook of Social Psychology, 2nd edn. Menlo Park, CA: Addison-Wesley.Google Scholar
Anthony, B. I. (1985). In the blink of an eye: implications of reflex modifcation for information processing. In Ackles, P. K., Jennings, J. R., & Coles, M. G. H. (eds.), Advances in Psychophysiology, vol. 1 (pp. 167218). Greenwich, CT: JAI Press.Google Scholar
Arndt, J., Allen, J. J. B., & Greenberg, J. (2001). Traces of terror: subliminal death primes and facial electromyographic indices of affect. Motivation and Emotion, 25: 253277.Google Scholar
Bakker, F. C., Boschker, M. S. J., & Chung, T. (1996). Changes in muscular activity while imagining weight lifting using stimulus or response propositions. Journal of Sport and Exercise Psychology, 18: 313324.Google Scholar
Bansevicius, D. & Sjaastad, O. (1996). Cervicogenic headache: the influence of mental load on pain level and EMG of the shoulder-neck and facial muscles. Headache, 36: 372378.CrossRefGoogle ScholarPubMed
Bartholow, B. D., Fabiani, M., Gratton, G., & Bettencourt, B. A. (2001). A psychophysiological examination of cognitive processing of affective responses to social expectancy violations. Psychological Science, 12: 197204.Google Scholar
Basmajian, J. V. (1989). Biofeedback: Principles and Practice for Clinicians, 3rd edn. Baltimore, MD: Williams & Wilkins.Google Scholar
Basmajian, J. V. & De Luca, C. J. (1985). Muscles Alive: Their Functions Revealed by Electromyography, 5th edn. Baltimore, MD: Williams & Wilkins.Google Scholar
Bavelas, J. B., Black, A., Chovil, N., Lemery, C. R., & Mullett, J. (1988). Form and function in motor mimicry: topographic evidence that the primary function is communicative. Human Communication Research, 14: 275299.CrossRefGoogle Scholar
Bavelas, J. B., Black, A., Lemery, C. R., & Mullett, J. (1986). “I show how you feel”: motor mimicry as a communicative act. Journal of Personality and Social Psychology, 50: 322329.CrossRefGoogle Scholar
Beebe-Center, J. G. (1932). The Psychology of Pleasantness and Unpleasantness. New York: Van Nostrand.CrossRefGoogle Scholar
Berkinblit, M. B., Feldman, A. G., & Fulson, O. I. (1986). Adaptability of innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences, 9: 585638.Google Scholar
Bernardis, P. & Gentilucci, M. (2006). Speech and gesture share the same communication system. Neuropsychologia, 44: 178190.Google Scholar
Blumenthal, T., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42: 115.Google Scholar
Boiten, F. (1996). Autonomic response patterns during voluntary facial action. Psychophysiology, 33: 123131.CrossRefGoogle ScholarPubMed
Bond, C. F. & Titus, L. J. (1983). Social facilitation: a meta-analysis of 241 studies. Psychological Bulletin, 94: 265292.Google Scholar
Braathen, E. T. & Sveback, S. (1994). EMG response patterns and motivational styles as predictors of performance and discontinuation in explosive and endurance sports among talented teenage athletes. Personality and Individual Differences, 17: 545556.Google Scholar
Bradley, M., Cuthbert, B. N., & Lang, P. J. (1999). Affect and the startle reflex. In Dawson, M. E., Schell, A., & Boehmelt, A. (eds.), Startle Modification: Implications for Neuroscience, Cognitive Science, and Clinical Science (pp. 157183). Cambridge University Press.CrossRefGoogle Scholar
Breazeal, C. (2003). Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59: 119155.CrossRefGoogle Scholar
Britt, T. W. & Blumenthal, T. D. (1992). The effects of anxiety on motoric expression of the startle response. Personality and Individual Differences, 13: 9197.Google Scholar
Brodie, M., Walmsley, A., & Page, W. (2008). Fusion motion capture: a prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing. Sports Technology, 1: 1728.Google Scholar
Brown, P. (2000). Cortical drives to human muscles: the Piper and related rhythms. Progress in Neurobiology, 60: 97108.Google Scholar
Bruintjes, T. D., van Olphen, A. F., Hillen, B., & Weijs, W. A. (1996). Electromyography of the human nasal muscles. European Archives of Otorhinolaryngology, 253: 464469.Google Scholar
Brunia, C. H. M. & Boelhouwer, A. J. W. (1988). Reflexes as tools: a window in the central nervous system. Advances in Psychophysiology, 3: 167.Google Scholar
Budzynski, T. H. & Stoyva, I. M. (1969). An instrument for producing deep muscle relaxation by means of analog information feedback. Journal of Applied Behavior Analysis, 2: 231237.Google Scholar
Burtt, H. E. & Tuttle, W. W. (1925). The patellar tendon reflex and affective tone. American Journal of Psychology, 36: 553561.CrossRefGoogle Scholar
Butko, N. J., Theocharous, G., Philipose, M., & Movellan, J. R. (2011). Automated facial affect analysis for one-on-one tutoring applications. In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011) (pp. 382387). Piscataway, NJ: IEEE.Google Scholar
Cacioppo, J. T., Berntson, G., & Klein, D. J. (1992a). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions.” Review of Personality and Social Psychology, 14: 6398.Google Scholar
Cacioppo, J. T., Bush, L. K., & Tassinary, L. G. (1992b). Microexpressive facial actions as a function of affective stimuli: replication and extension. Personality and Social Psychology Bulletin, 18: 515526.CrossRefGoogle Scholar
Cacioppo, J. T., Martzke, J. S., Petty, R. E., & Tassinary, L. G. (1988). Specific forms of facial EMG response index emotions during an interview: from Darwin to the continuous flow hypothesis of affect-laden information processing. Journal of Personality and Social Psychology, 54: 592604.CrossRefGoogle Scholar
Cacioppo, J. T. & Petty, R. E. (1981a). Electromyograms as measures of extent and affectivity of information processing. American Psychologist, 36: 441456.Google Scholar
Cacioppo, J. T. & Petty, R. E. (1981b). Electromyographic specificity during covert information processing. Psychophysiology, 18: 518523.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Petty, R. E. (1986). Social processes. In Coles, M. G. H., Donchin, E., & Porges, S. (eds.), Psychophysiology: Systems, Processes, and Applications (pp. 646679). New York: Guilford Press.Google Scholar
Cacioppo, J. T., Petty, R. E., Losch, M. E., & Kim, H. S. (1986). Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. Journal of Personality and Social Psychology, 50: 260268.Google Scholar
Cacioppo, J. T, Petty, R. E., & Morris, K. (1985). Semantic, evaluative, and self-referent processing: memory, cognitive effort, and somatovisceral activity. Psychophysiology, 22: 371384.Google Scholar
Cacioppo, J. T., Priester, J. T., & Berntson, G. (1993). Rudimentary determinants of attitudes: II. Arm flexion and extension have differential effects on attitudes. Journal of Personality and Social Psychology, 65: 517.Google Scholar
Cacioppo, J. T., Rourke, P. A., Marshall-Goodell, B. S., Tassinary, L. G., & Baron, R. S. (1990). Rudimentary physiological effects of mere observation. Psychophysiology, 27: 177186.Google Scholar
Cacioppo, J. T., Tassinary, L. G., & Fridlund, A. (1990). The skeletomotor system. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology (pp. 325384). Cambridge University Press.Google Scholar
Cappella, J. N. (1993). The facial feedback hypothesis in human interaction: review and speculation. Journal of Language and Social Psychology, 12: 1329.Google Scholar
Castellano, G., Pereira, A., Leite, I., Paiva, A., & McOwan, P. W. (2009). Detecting user engagement with a robot companion using task and social interaction-based features. In Proceedings of the 2009 International Conference on Multimodal Interfaces (pp. 119126). New York: Association for Computing Machinery.Google Scholar
Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., Cossu, G., & Rizzolatti, G. (2007). Impairment of actions chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences of the USA, 104: 1782517830.Google Scholar
Chang, K., Lu, S., & Wu, X. (2012). A wireless sEMG recording system and its application to muscle fatigue detection. Sensors, 12: 489499.Google Scholar
Chapman, A. J. (1974). An electromyographic study of social facilitation: a test of the “mere presence” hypothesis. British Journal of Psychology, 65: 123128.CrossRefGoogle ScholarPubMed
Charbonnier, C., Kolo-Christophe, F., Duc, S., Pfirrmann, C., Menetrey, J., Duthon, V., … & Hoffmeyer, P. (2009). Extreme motion as a potential initiator of hip osteoarthritis. Swiss Medical Weekly Supplement, 173: 2324.Google Scholar
Chen, Y., Yang, Z., & Wang, J. (2015). Eyebrow emotional expression recognition using surface EMG signals. Neurocomputing, 168: 871879.Google Scholar
Chovil, N. (1991). Social determinants of facial displays. Journal of Nonverbal Behavior, 15: 141154.Google Scholar
Chun, W. X. (1985). An approach to the nature of tension headache. Headache, 25: 188189.Google Scholar
Cikara, M. & Fiske, S. T. (2012). Stereotypes and Schadenfreude: affective and physiological markers of pleasure at outgroup misfortunes. Social Psychological and Personality Science, 3: 6371.CrossRefGoogle ScholarPubMed
Cloete, T. & Scheffer, C. (2010). Repeatability of an off-the-shelf, full body inertial motion capture system during clinical gait analysis. In Proceedings of the 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC) (pp. 51255128). Piscataway, NJ: IEEE.Google Scholar
Compton, R. W. (1973). Morphological, physiological, and behavioral studies of the facial musculature of the Coati (Nasua). Brain, Behavior, and Evolution, 7: 85126.CrossRefGoogle ScholarPubMed
Contarino, M. F., Groot, P. F. C., van der Meer, J. N., Bour, L. J., Speelman, J. D., Nederveen, , … & van Rootselaar, A. (2012). Is there a role for combined EMG–fMRI in exploring the pathophysiology of essential tremor and improving functional neurosurgery? PLoS One, 7: e46234. doi:10.1371/journal.pone.0046234Google Scholar
Cook, T. D. & Campbell, D. T. (1979). Quasi-Experimentation: Design and Analysis Issues for Field Settings. Boston, MA: Houghton Mifflin.Google Scholar
Cooper, R., Osselton, J. W., & Shaw, J. C. (1980). EEG Technology, 3rd edn. London: Butterworth.Google Scholar
Cram, J. R., Kasman, G., & Holtz, J. (1998). Introduction to Surface EMG. Gaithersburg, MD: Aspen Publications.Google Scholar
Cuthbertson, R. A. (1990). The highly original Dr. Duchenne. In Cuthbertson, R. A. (ed. and trans.), The Mechanism of Human Facial Expression (pp. 225241). Cambridge University Press.Google Scholar
Dai, Y., Shibata, Y., Ishii, T., Hashimoto, K., Katamachi, K., Noguchi, K., … & Cai, D. (2001). An associate memory model of facial expressions and its application in facial expression recognition of patients on bed. In Proceedings of the IEEE International Conference on Multimedia (p. 151). Piscataway, NJ: IEEE.Google Scholar
Dambrun, M., Despres, G., & Guimond, S. (2004). On the multifaceted nature of prejudice: psychophysiology responses to ingroup and outgroup ethnic stimuli. Current Research in Social Psychology, 8: 187204.Google Scholar
Darwin, C. (1873 [1872]). The Expression of the Emotions in Man and Animals. New York: Appleton.Google Scholar
Das, S., Trutoiu, L., Murai, A., Alcindor, D., Oh, M., De la Torre, F., & Hodgins, J. (2011). Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data. In Proceedings of the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 67896792). Piscataway, NJ: IEEE.Google Scholar
Dauvilliers, Y., Rompré, S., Gagnon, J. F., Vendette, M., Petit, D., & Montplaisir, J. (2007). REM sleep characteristics in narcolepsy and REM sleep behavior disorder. Sleep, 30: 844849.Google Scholar
Davis, J. F. (1952). Manual of Surface Electromyography. Montreal: Laboratory for Psychological Studies, Allan Memorial Institute of Psychiatry.Google Scholar
Davis, J. F. & Malmo, R. B. (1951). Electromyographic recording during interview. American Journal of Psychiatry, 107: 908916.Google Scholar
Davis, J. F., Malmo, R. B., & Shagass, C. (1954). Electromyographic reaction to strong auditory stimulation in psychiatric patients. Canadian Journal of Psychology, 8: 177186.Google Scholar
Davis, M., Walker, D. L., & Myers, K. M. (2003). Role of the amygdala in fear extinction measured with potentiated startle. Annals of the New York Academy of Sciences, 985: 218232.CrossRefGoogle ScholarPubMed
Davis, R. C. (1938). The relation of muscle action potentials to difficulty and frustration. Journal of Experimental Psychology, 23: 141158.Google Scholar
Davis, R. C. (1940). Set and Muscular Tension. Bloomington, IN: Indiana University Publications, Science series no. 10.Google Scholar
Davis, W. J., Rahman, M. A., Smith, L. J., Burns, A., Senecal, L., McArthur, D., … & Wagner, W. (1995). Properties of human affect induced by static color slides (IAPS): dimensional, categorical and electromyographic analysis. Biological Psychology, 41: 229253.Google Scholar
De Luca, C. J. & Erim, Z. (1994). Common drive of motor units in regulation of muscle force. Trends in Neurosciences, 17: 299305.CrossRefGoogle ScholarPubMed
De Luca, C. J. & Knaflitz, M. (1992). Surface Electromyography: What’s New? Turin: C.L.U.T. Editrice.Google Scholar
Dennis, M., Agostino, A., Taylor, H. G., Bigler, E. D., Rubin, K., Vannatta, K., … & Yeates, K. O. (2013). Emotional expression and socially modulated emotive communication in children with traumatic brain injury. Journal of the International Neuropsychological Society, 19: 3443.CrossRefGoogle ScholarPubMed
Desmedt, J. E. & Godaux, E. (1981). Spinal motoneuron recruitment in man: rank deordering with direction but not with speed of movement. Science, 214: 933936.Google Scholar
Detenber, B. H., Simmons, R. F., & Reiss, J. E. (2000). The emotional significance of color in television presentations. Media Psychology, 2: 331355.Google Scholar
Dimberg, U. (1982). Facial reactions to facial expressions. Psychophysiology, 19: 643647.Google Scholar
Dimberg, U. (1990). Gender differences in facial reactions to facial expressions. Biological Psychology, 30: 151159.Google Scholar
Disselhorst-Klug, C., Silny, J., & Rau, G. (1997). Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters. IEEE Transactions on Biomedical Engineering, 44: 567574.Google Scholar
Dodge, R. B. (1911). A systematic exploration of a normal knee jerk, its technique, the form of muscle contraction, its amplitude, its latent time and its theory. Zeitschrift für Allgemeine Physiologie, 12: 158.Google Scholar
Dollins, A. B. & McGuigan, F. J. (1989). Frequency analysis of electromyographically measured covert speech behavior. Pavlovian Journal of Biological Science, 24: 2730.Google Scholar
Dorfman, D. & Cacioppo, J. T. (1990). Waveform moment analysis: topographical analysis of nonrhythmic waveforms. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology (pp. 661707). Cambridge University Press.Google Scholar
Du, S., Tao, Y., & Martinez, A. (2014). Compound facial expressions of emotion. Proceedings of the National Academy of Sciences of the USA, 111: 14541462.Google Scholar
Duchenne, G. B. (1990 [1862]). The Mechanism of Human Facial Expression, ed. and trans. Cuthbertson, R. A.. Cambridge University Press.Google Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Eason, R. G. & White, C. T. (1961). Muscular tension, effort, and tracking difficulty: studies of parameters which affect tension levels and performance efficiency. Perceptual and Motor Skills, 12: 331372.Google Scholar
Eccles, J. C. & Sherrington, C. S. (1930). Number and contraction values of individual motor-units examined in some muscles of the limb. Proceedings of the Royal Society of London, 106B: 326357.Google Scholar
Eibl-Eibesfeldt, I. (1972). Similarities and differences between cultures in expressive movement. In Hinde, R. A. (ed.), Nonverbal Communication (pp. 297314). Cambridge University Press.Google Scholar
Ekman, P. (1972). Universal and cultural differences in facial expressions of emotion. In Cole, J. (ed.), Nebraska Symposium on Motivation, vol. 19 (pp. 207218). Lincoln, NE: University of Nebraska Press.Google Scholar
Ekman, P., Friesen, W. V., & Hager, J. C. (2002). Facial Action Coding System [E-book]. Salt Lake City, UT: Research Nexus.Google Scholar
Englis, B. G., Vaughan, K. B., & Lanzetta, J. T. (1982). Conditioning of counter-empathic emotional responses. Journal of Experimental Social Psychology, 18: 375391.Google Scholar
Enoka, R. M. & Pearson, K. (2013). The motor unit and muscle action. In Kandel, E. R., Schwartz, J. H., Jessel, T. M., Sieglbaum, S. A., & Hudspeth, A. J. (eds.), Principles of Neural Science, 5th edn. (pp. 768789). New York: Elsevier.Google Scholar
Epstein, L. H. (1990). Perception of activity in the zygomaticus major and corrugator supercilii muscle regions. Psychophysiology, 27: 6872.Google Scholar
Erlacher, D. & Schredl, M. (2008). Do REM (lucid) dreamed and executed actions share the same neural substrate? International Journal of Dream Research, 1: 713.Google Scholar
Fanardjian, V. V. & Manvelyan, L. R. (1987). Mechanisms regulating the activity of facial nucleus motoneurons – IV. Influences from the brainstem structures. Neuroscience, 20: 845853.Google Scholar
Farina, D., Cescon, C., & Merletti, R. (2002). Influence of anatomical, physical, and detection-system parameters on surface EMG. Biological Cybernetics, 86: 445456.Google Scholar
Fearing, F. (1930). Reflex Action: A Study in the History of Physiological Psychology. Baltimore, MD: Williams & Wilkins.Google Scholar
Foerster, J. & Strack, F. (1997). Motor action in retrieval of valenced information: a motor congruence effect. Perceptual and Motor Skills, 85: 14191427.Google Scholar
Freeman, G. L. (1931). Mental activity and the muscular processes. Psychological Review, 38: 428447.Google Scholar
Fridlund, A. J. (1991). Sociality of solitary: potentiation by an implicit audience. Journal of Personality and Social Psychology, 60: 229240.Google Scholar
Fridlund, A. J. (1994). Human Facial Expression: An Evolutionary View. San Diego, CA: Academic Press.Google Scholar
Fridlund, A. J. & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23: 567589.Google Scholar
Fridlund, A. J., Fowler, S. C., & Pritchard, D. A. (1980). Striate muscle tensional patterning in frontalis EMG biofeedback. Psychophysiology, 17: 4755.Google Scholar
Fridlund, A. J., Hatfield, M. E., Cottam, G. L., & Fowler, S. C. (1986). Anxiety and striate-muscle activation: evidence from electromyographic pattern analysis. Journal of Abnormal Psychology, 95: 228236.Google Scholar
Friesen, W. V. (1972). Cultural differences in facial expression in a social situation: an experimental text of the concept of display rules. Unpublished doctoral dissertation, University of California, San Francisco.Google Scholar
Fulton, J. F. (1926). Muscular Contraction and the Reflex Control of Movement. Baltimore, MD: Williams & Wilkins.Google Scholar
Gallese, V. (2003). The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology, 36: 171180.Google Scholar
Gallistel, C. R. (1980). The Organization of Action: The New Synthesis. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ganesh, G., Franklin, D. W., Gassert, R., Imamizu, H., & Kawato, M. (2007). Accurate real-time feedback of surface EMG during fMRI. Journal of Neurophysiology, 97: 912920.Google Scholar
Gans, C. & Gorniak, G. C. (1980). Electromyograms are repeatable: precautions and limitations. Science, 210: 795797.Google Scholar
Gazzoni, M. (2010). Multichannel surface electromyography in ergonomics: potentialities and limits. Human Factors and Ergonomics in Manufacturing & Service Industries, 20: 255271.Google Scholar
Geen, R. G. & Gange, J. J. (1977). Drive theory of social facilitation: twelve years of theory and research. Psychological Bulletin, 84: 12671288.Google Scholar
Geen, T. R. (1992). Facial expressions in socially isolated primates: open and closed programs for expressive behavior. Journal of Research in Personality, 26: 273280.Google Scholar
Geen, T. R. & Tassinary, L. G. (2002). The mechanization of expression in John Bulwar’s Pathomyotonia. American Journal of Psychology, 115: 275300.Google Scholar
Gehricke, J., & Shapiro, D. (2001). Facial and autonomic activity in depression: social context differences during imagery. International Journal of Psychophysiology, 41: 5364.Google Scholar
Geisser, M. E., Ranavaya, M., Haig, A. J., Roth, R. S., Zucker, R., Ambroz, C., & Caruso, M. (2005). A meta-analytic review of surface electromyography among persons with low back pain and normal, healthy controls. The Journal of Pain, 6: 711726.Google Scholar
Germana, J. (1974). Electromyography: human and general. In Thompson, R. F. & Patterson, M. M. (eds.), Bioelectric Recording Techniques: Part C: Receptor and Effector Processes (pp. 155163). New York: Academic Press.Google Scholar
Giggins, O. M., Persson, U. M., & Caulfield, B. (2013). Biofeedback in rehabilitation. Journal of Neuroengineering and Rehabilitation, 10(1): 6071.CrossRefGoogle ScholarPubMed
Gilbert, A. N., Fridlund, A. J., & Sabini, J. (1987). Hedonic and social determinants of facial displays to odors. Chemical Senses, 12: 355363.Google Scholar
Gilbert, C. & Moss, D. P. (2003). Biofeedback and biological monitoring. In Moss, D. P., McGrady, A. V., Davies, T. C., & Wickremasekera, I. (eds.), Handbook of Mind-Body Medicine for Primary Care (pp. 109122). Thousand Oaks, CA: Sage.Google Scholar
Girard, E., Tassinary, L. G., Kappas, A., Gosselin, P., & Bontempo, D. (1997). The covert-to-overt threshold for facial actions: an EMG study. Psychophysiology, 34: S38.Google Scholar
Goldstein, J. B. (1972). Electromyography: a measure of skeletal muscle response. In Greenheld, N. S. & Sternbach, R. A. (eds.), Handbook of Psychophysiology (pp. 329366). New York: Holt, Rinehart & Winston.Google Scholar
Golla, F. & Antonovitch, S. (1929). The relaxation of muscular tonus and the patellar reflex to mental work. Journal of Mental Science, 75: 234241.Google Scholar
Gousain, A. K., Amarante, M. T. J., Hydem, J. S., & Yousif, N. J. (1996). A dynamic analysis of changes in the nasolabial fold using magnetic resonance imaging: implications for facial rejuvination and facial animation surgery. Plastic and Reconstructive Surgery, 98: 622636.Google Scholar
Graham, J. L. (1980). A new system for measuring nonverbal responses to marketing appeals. 1980 AMA Educator’s Conference Proceedings, 46: 340343.Google Scholar
Gray, H. (2000 [1918]). Anatomy of the Human Body, 20th edn. New York: Scholar
Groff, B. D., Baron, R. S., & Moore, D. L. (1983). Distraction, attentional conflict, and drivelike behavior. Journal of Experimental Social Psychology, 19: 359380.Google Scholar
Hackley, S. (1999). Implications of blink reflex research for theories of attention and consciousness. In Dawson, M. E., Schell, A. M., & Böhmelt, A. H. (eds.), Startle Modification: Implications for Neuroscience, Cognitive Science, and Clinical Science (pp. 137156). Cambridge University Press.Google Scholar
Hager, J. C. & Ekman, P. (1981). Methodological problems in Tourangeau and Ellsworth’s study of facial expression and experience of emotion. Journal of Personality and Social Psychology, 40: 358362.Google Scholar
Hamm, J., Kohler, C. G., Gur, R. C., & Verma, R. (2011). Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. Journal of Neuroscience Methods, 200: 237256.Google Scholar
Harmon-Jones, E. & Winkielman, P. (2007). Social Neuroscience: Integrating Biological and Psychological Explanations of Social Behavior. New York: Guilford Press.Google Scholar
Harvey, R. & Peper, E. (1997). Surface electromyography and mouse use. Ergonomics, 40: 781789.Google Scholar
Hatfield, E., Cacioppo, J. T., & Rapson, R. L. (1993). Emotional Contagion. Cambridge University Press.Google Scholar
Hayes, K. J. (1960). Wave analyses of tissue noise and muscle action potential. Journal of Applied Physiology, 15: 749752.Google Scholar
Hazlett, R. L. & Hazlett, S. Y. (1999). Emotional response to television commercials: facial EMG vs. self-report. Journal of Advertising Research, 39: 723.Google Scholar
Hefferline, R. F., Keenan, B., & Harford, R. A. (1959). Escape and avoidance conditioning in human subjects without their observation of the response. Science, 130: 13381339.Google Scholar
Henneman, E. (1980). Organization of the motoneuron pool: the size principle. In Mountcastle, V. E. (ed.), Medical Physiology, Volume 1, 14th edn. (pp. 718741). St. Louis, MO: Mosby.Google Scholar
Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10: 361374.Google Scholar
Hess, U., Banse, R., & Kappas, A. (1995). The intensity of facial expression is determined by underlying affective state and social situation. Journal of Personality and Social Psychology, 69: 280288.Google Scholar
Hess, U., Kappas, A., McHugo, G. J., & Kleck, R. E. (1989). An analysis of the encoding and decoding of spontaneous and posed smiles: the use of facial electromyography. Journal of Nonverbal Behavior, 13: 121137.Google Scholar
Hess, U., Philippot, P., & Blairy, S. (1999). Mimicry: facts and fiction. In Philippot, P., Feldman, R., & Coats, E. (eds.), The Social Context of Nonverbal Behavior: Studies in Emotion and Social Interaction (pp. 213241). Cambridge University Press.Google Scholar
Hill, A. V. (1959). The heat production of muscle and nerve, 1848–1914. Annual Review of Physiology, 21: 118.Google Scholar
Hislop, H. J. & Montgomery, J. (2002). Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination, 7th edn. Philadelphia: W. B. Saunders Company.Google Scholar
Honts, C. R., Devitt, M. K., Winbush, M., & Kircher, J. C. (1996). Mental and physical countermeasures reduce the accuracy of the concealed knowledge test. Psychophysiology, 33: 8492.Google Scholar
Honts, C. R., Hodes, R. L., & Raskin, D. C. (1985). Effects of physical countermeasures on the physiological detection of deception. Journal of Applied Psychology, 79: 177187.Google Scholar
Honts, C. R., Raskin, D. C., & Kircher, J. C. (1987). Effects of physical countermeasures and their electromyographic detection during polygraph tests for deception. Journal of Psychophysiology, 1: 241247.Google Scholar
Honts, C. R., Raskin, D. C., & Kircher, J. C. (1994). Mental and physical countermeasures reduce the accuracy of polygraph tests. Journal of Applied Psychology, 79: 252259.Google Scholar
Hu, C. S., Wang, Q., Han, T., Weare, E., & Fu, G. (2015). Differential emotion attribution to neutral faces of own and other races. Cognition & Emotion. doi: 10.1080/02699931.2015.1092419.Google Scholar
Hu, S. & Wan, H. (2003). Imagined events with specific emotional valence produce specific patterns of facial EMG activity. Perceptual and Motor Skills, 97: 10911099.Google Scholar
Huang, C. N., Chen, C. H., & Chung, H. Y. (2006). Application of facial electromyography in computer mouse access for people with disabilities. Disability & Rehabilitation, 28: 231237.Google Scholar
Humphrey, G. (1951). Thinking. New York: John Wiley.Google Scholar
Hutchinson, R. R., Pierce, G. E., Emley, G. S., Proni, T. J., & Sauer, R. A. (1977). The laboratory measurement of human anger. Biobehavioral Reviews, 1: 241259.Google Scholar
Huxley, A. F. (1980). Reflections on Muscle. Liverpool University Press.Google Scholar
Isley, C. L. & Basmajian, J. V. (1973). Electromyography of the human cheeks and lips. Anatomical Record, 176: 143148.Google Scholar
Ison, J. R. & Hoffman, H. S. (1983). Reflex modification in the domain of startle: II. The anomalous history of a robust and ubiquitous phenomenon. Psychological Bulletin, 94: 317.Google Scholar
Izard, C. E. (1971). The Face of Emotion. New York: Appleton-Century-Crofts.Google Scholar
Jacobsen, A., Kales, A., Lehmann, D., & Hoedmaker, F. S. (1964). Muscle tonus in human subjects during sleep and dreaming. Experimental Neurology, 10: 418424.Google Scholar
Jacobsen, A., Kales, A., Zweizig, J. R., & Kales, J. (1965). Special EEG and EMG techniques for sleep research. American Journal of EEG Technology, 18: 510.Google Scholar
Jacobson, E. (1927). Action currents from muscular contractions during conscious processes. Science, 66: 403.CrossRefGoogle ScholarPubMed
Jacobson, E. (1932). Electrophysiology of mental activities. American Journal of Psychology, 44: 677694.Google Scholar
James, W. (1884). What is an emotion?Mind, 9: 188205.Google Scholar
James, W. (1890). The Principles of Psychology. New York: Holt.Google Scholar
Jäncke, L. (1996). Facial EMG in an anger-provoking situation: individual differences in directing anger outwards or inwards. International Journal of Psychophysiology, 23: 207214.Google Scholar
Jäncke, L. & Kaufmann, N. (1994). Facial EMG responses to odors in solitude and with an audience. Chemical Senses, 19: 99111.Google Scholar
Jenny, A. B. & Saper, C. B. (1987). Organization of the facial nucleus and corticofacial projection in the monkey: a reconsideration of the upper motor neuron facial palsy. Neurology, 37: 930939.Google Scholar
Jensen, R. (1999). Pathophysiological mechanisms of tension-type headache: a review of epidemiological and experimental studies. Cephalagia, 19: 602621.Google Scholar
Kendall, F. & McCreary, E. K. (1993). Muscles: Testing and Function, 4th edn. Baltimore, MD: Williams & Wilkins.Google Scholar
Khan, S. D., Bloodworth, D. S., & Woods, R. H. (1971). Comparative advantages of bipolar abraded skin surface electrodes over bipolar intramuscular electrodes for single motor unit recording in psychophysiological research. Psychophysiology, 8: 635647.Google Scholar
Kleinke, C. L. & Walton, J. H. (1982). Influence of reinforced smiling on affective responses in an interview. Journal of Personality and Social Psychology, 42: 557565.Google Scholar
Knowlton, B. J. & Squire, L. R. (1993). The learning of categories: parallel brain systems for item memory and category knowledge. Science, 262: 17471749.Google Scholar
Komi, P. V. & Buskirk, E. R. (1970). Reproducibility of electromyographic measurements with inserted wire electrodes and surface electrodes. Electromyography, 10: 357367.Google Scholar
Kraut, R. E. & Johnson, R. E. (1979). Social and emotional messages of smiling: an ethological approach. Journal of Personality and Social Psychology, 37: 15391553.Google Scholar
Kreibig, S. D., Samson, A. C., & Gross, J. J. (2013). The psychophysiology of mixed emotional states. Psychophysiology, 50: 799811.Google Scholar
Kritikos, A. & Brasch, C. (2008). Visual and tactile integration in action comprehension and execution. Brain Research, 1242: 7386.Google Scholar
Kuroda, Y., Thatcher, J., & Thatcher, R. (2011). Metamotivational state and dominance: links with EMG gradients during isokinetic leg extension and a test of the misfit effect. Journal of Sports Science, 29: 403410.Google Scholar
Laird, J. D. (1984). The real role of facial response in the experience of emotion: a reply to Tourangeau and Ellsworth, and others. Journal of Personality and Social Psychology, 47: 909917.Google Scholar
Lamotte, T., Priez, A., Lepoivre, E., Duchêne, J., & Tarrière, C. (1996). Surface electromyography as a tool to study head rest comfort in cars. Ergonomics, 39: 781796.Google Scholar
Landis, C. & Hunt, W. A. (1937). Magnification of time as a research technique in the study of behavior. Science, 85: 384385.Google Scholar
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology, 30: 261273.Google Scholar
Lanzetta, J. T. & Englis, B. G. (1989). Expectations of cooperation and competition and their effects on observers’ vicarious emotional responses. Journal of Personality and Social Psychology, 56: 543554.Google Scholar
Lapatki, B. G., Oostenveld, R., Van Dijk, J. P., Jonas, I. E., Zwarts, M. J., and Stegeman, D. F. (2010). Optimal placement of bipolar surface EMG electrodes in the face based on single motor unit analysis, Psychophysiology, 47: 299314.Google Scholar
Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40: 776785.Google Scholar
Larsen, R. J., Kasimatis, M., & Frey, K. (1992). Facilitating the furrowed brow: an unobtrusive test of the facial feedback hypothesis applied to unpleasant affect. Cognition & Emotion, 6: 321338.Google Scholar
Laurenti-Lions, L., Gallego, J., Chambille, B., Vardon, G., & Jacquemin, C. (1985). Control of myoelectrical responses through reinforcement. Journal of the Experimental Analysis of Behavior, 44: 185193.Google Scholar
Leifting, B., Bes, F., Fagioli, I., & Salzarulo, P. (1994). Electromyographic activity and sleep states in infants. Sleep, 17: 718722.Google Scholar
Leite, I., Pereira, A., Mascarenhas, S., Martinho, C., Prada, R., & Paiva, A. (2013). The influence of empathy in human–robot relations. International Journal of Human–Computer Studies, 71: 250260.Google Scholar
Levenson, R. W. (1992). Autonomic nervous system differences among emotions. Psychological Science, 3: 2327.Google Scholar
Levenson, R. W., Ekman, P., & Friesen, W. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27: 363384.Google Scholar
Lew, H. L., Johnson, E. W., & Pease, W. S. (2005). Johnson’s Practical Electromyography, 4th edn. Baltimore, MD: Lippincott Williams & Wilkins.Google Scholar
Liddell, E. G. T. (1960). The Discovery of the Reflexes. Oxford: Clarendon Press.Google Scholar
Liddell, E. G. T. & Sherrington, C. S. (1925). Recruitment and some other features of reflex inhibition. Proceedings of the Royal Society of London (Biology), 97: 488518.Google Scholar
Lindsley, D. B. (1935). Electrical activity of human motor units during voluntary contraction. American Journal of Physiology, 114: 9099.Google Scholar
Lippold, O. C. J. (1967). Electromyography. In Venables, P. H. & Martin, I. (eds.), Manual of Psychophysiological Methods (pp. 245298). New York: John Wiley.Google Scholar
Littlewort, G. C., Bartlett, M. S., & Lee, K. (2009). Automatic coding of facial expressions displayed during posed and genuine pain. Image and Vision Computing, 27: 17971803.Google Scholar
Loeb, G. E. & Gans, C. (1986). Electromyography for Experimentalists. University of Chicago Press.Google Scholar
Lowery, M. M., Stoykov, N. S., & Kuiken, T. A. (2003). Independence of myoelectric control signals examined using a surface EMG model. IEEE Transactions on Biomedical Engineering, 50: 789793.Google Scholar
Lundberg, U., Dohns, I. E., Melin, B., Sandsjo, L., Palmerud, G., Kadefors, R., … & Parr, D. (1999). Psychophysiological stress responses, muscle tension, and neck and shoulder pain among supermarket cashiers. Journal of Occupational Health Psychology, 4: 245255.Google Scholar
Lundqvist, L. O. & Dimberg, U. (1995). Facial expressions are contagious. Journal of Psychophysiology, 9: 203211.Google Scholar
Luria, A. R. (1932). The Nature of Human Conflicts. New York: Liveright.Google Scholar
Lutz, R. S. (2003). Covert muscle excitation is outflow from the central generation of motor imagery. Behavioural Brain Research, 140: 149163.Google Scholar
Lykken, D. (1998). A Tremor in the Blood: Uses and Abuses of the Lie Detector, 2nd edn. New York: Plenum.Google Scholar
Lynn, P. A., Bettles, N. D., Hughes, A. D., & Johnson, S. W. (1978). Influences of electrode geometry on bipolar recordings of the surface electromyogram. Medical and Biological Engineering and Computing, 16: 651660.Google Scholar
Ma, C., Szeto, G. P., Yan, T., Wu, S., Lin, C., & Li, L. (2011). Comparing biofeedback with active exercise and passive treatment for the management of work-related neck and shoulder pain: a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 92: 849858.Google Scholar
Madsen, M., El Kaliouby, R., Eckhardt, M., Hoque, M. E., Goodwin, M. S., & Picard, R. (2009). Lessons from participatory design with adolescents on the autism spectrum. In CHI’09 Extended Abstracts on Human Factors in Computing Systems (pp. 38353840). New York: ACM.Google Scholar
Malcolm, R., Von, J. M., & Horney, R. A. (1989). Correlations between facial electromyography and depression. Psychiatric Forum, 15: 1923.Google Scholar
Malmo, R. B. (1965). Physiological gradients and behavior. Psychological Bulletin, 64: 225234.Google Scholar
Malmo, R. B. (1975). On Emotions, Needs, and Our Archaic Brain. New York: Holt, Rinehart & Winston.Google Scholar
Malmo, R. B. & Malmo, H. P. (2000). On electromyographic (EMG) gradients and movement-related brain activity: significance for motor control, cognitive functions, and certain psychopathologies. International Journal of Psychophysiology, 38: 145209.Google Scholar
Markovsky, B. & Berger, S. M. (1983). Crowd noise and mimicry. Personality and Social Psychology Bulletin, 9: 9096.Google Scholar
Martin, I. (1956). Levels of muscle activity in psychiatric patients. Acta Psychologica, 12: 326341.Google Scholar
Mathews, B. H. C. (1934). A special purpose amplifier. Journal of Physiology (London), 81: 28.Google Scholar
Max, L. W. (1932). Myoesthesis and “imageless thought.” Science, 76: 235236.Google Scholar
Max, L. W. (1937). An experimental study of the motor theory of consciousness: IV. Action-current responses in the deaf during awakening, kinaesthetic imagery and abstract thinking. Journal of Comparative Psychology, 24: 301344.Google Scholar
McCanne, T. R. & Anderson, J. A. (1987). Emotional responding following experimental manipulation of facial electromyographic activity. Journal of Personality and Social Psychology, 52: 759768.Google Scholar
McClelland, J. L. (1979). On the time relations of mental processes: an examination of systems in cascade. Psychological Review, 86: 287330.Google Scholar
McGarry, T. & Franks, I. (1997). A horse race between independent processes: evidence for a phantom point of no return in the preparation of a speeded motor response. Journal of Experimental Psychology: Human Perception and Performance, 23: 15331542.Google Scholar
McGuigan, F. J. (1966). Thinking: Studies of Covert Language Processes. New York: Appleton-Century-Crofts.Google Scholar
McGuigan, F. J. (1970). Covert oral behavior during the silent performance of language. Psychological Bulletin, 74: 309326.Google Scholar
McGuigan, F. J. (1978). Cognitive Psychophysiology: Principles of Covert Behavior. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
McGuigan, F. J. & Bailey, S. C. (1969). Logitudinal study of covert oral behavior during silent reading. Perceptual and Motor Skills, 28: 170.Google Scholar
McHugo, G. & Lanzetta, J. T. (1983). Methodological decisions in social psychophysiology. In Cacioppo, J. T. & Petty, R. E. (eds.), Social Psychophysiology: A Sourcebook (pp. 630665). New York: Guilford Press.Google Scholar
Merletti, R. & Parker, P. A. (2004). Electromyography: Physiology, Engineering, and Non-Invasive Applications. New York: John Wiley.Google Scholar
Merton, P. A. (2004). Reflexes. In Gregory, R. L. (ed.), The Oxford Companion to the Mind. Oxford University Press.Google Scholar
Mesin, L., Merletti, R., & Rainoldi, A. (2009). Surface EMG: the issue of electrode location. Journal of Electromyography and Kinesiology, 19: 719726.Google Scholar
Meyer, D. R. (1953). On the interaction of simultaneous responses. Psychological Bulletin, 20: 204220.Google Scholar
Meyer, D. R., Bahrick, H. P., & Fitts, P. M. (1953). Incentive, anxiety, and the human blink rate. Journal of Experimental Psychology, 45: 183287.Google Scholar
Morecraft, R. J., Stilwell-Morecraft, K. S., & Rossing, W. R. (2004). The motor cortex and facial expression: new insights from neuroscience. The Neurologist, 10: 235249.Google Scholar
Mulder, T. & Hulstijn, W. (1984). The effect of fatigue and repetition of the task on the surface electromyographic signal. Psychophysiology, 21: 528534.Google Scholar
Nakamura, T., Maejima, A., & Morishima, S. (2013). Detection of driver’s drowsy facial expression. In Proceedings of the 2nd IAPR Asian Conference on Pattern Recognition (ACPR), 2013 (pp. 749753). Piscataway: IEEE.Google Scholar
Needham, D. M. (1971). Machina Carnis: The Biochemistry of Muscular Contraction in its Historical Development. London: Cambridge University Press.Google Scholar
Nestoriuc, Y., Martin, A., Rief, W., & Andrasik, F. (2008). Biofeedback treatment for headache disorders: a comprehensive efficacy review. Applied Psychophysiology and Biofeedback, 33: 125140.Google Scholar
Nestoriuc, Y., Rief, W., & Martin, A. (2008). Meta-analysis of biofeedback for tension-type headache: efficacy, specificity, and treatment moderators. Journal of Consulting and Clinical Psychology, 76: 379396.Google Scholar
Netter, F. (1991). Anatomy, Physiology and Metabolic Disorders. Part 1: Musculoskeletal System. Ciba Collection, vol. 8. Chichester: John Wiley.Google Scholar
Neumann, D. L., Lipp, O. V., & Pretorius, N. R. (2004). The effects of lead stimulus and reflex stimulus modality on modulation of the blink reflex at very short, short, and long lead intervals. Perception and Psychophysics, 66: 141151.Google Scholar
Neumann, R. & Strack, F. (2000). Experiential and nonexperiential routes of motor influence on affect and evaluation. In Bless, H. & Forgas, J. P. (eds.), The Message Within: The Role of Subjective Experience in Social Cognition and Behavior (pp. 5268). Philadelphia, PA: Psychology Press.Google Scholar
Nosofsky, R. M. & Zaki, S. R. (1998). Dissociations between categorization and recognition in amnesic and normal individuals: an exemplar-based interpretation. Psychological Science, 9: 247255.Google Scholar
Oddsson, L. I. E., Giphart, J. E., Buijs, R. J. C., Roy, S. H., Taylor, H. P., & De Luca, C. J. (1997). Development of new protocols and analysis procedures for the assessment of LBP by surface EMG techniques. Journal of Rehabilitation Research and Development, 34: 415426.Google Scholar
O’Dwyer, N. J., Quinn, P. T., Guitar, B. E., Andrews, G., & Neilson, P. D. (1981). Procedures for verification of electrode placement in EMG studies of orofacial and mandibular muscles. Journal of Speech and Hearing Research, 241: 273288.Google Scholar
Olivers, C. N. L. & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychological Science, 16: 265269.Google Scholar
Ota, N., Gahr, M., & Soma, M. (2015). Tap dancing birds: the multimodal mutual courtship display of males and females in a socially monogamous songbird. Scientific Reports, 5, Article 16614. Retrieved November 23, 2015 from Scholar
Paloheimo, M. (1990). Quantitative surface electromyography (qEMG): applications in anaesthesiology and critical care. Acta Anaesthesiologica Scandinavica [Supplementum 93], 34: 183.Google Scholar
Pernkopf, E. (1980). Atlas of Topographical and Applied Human Anatomy, 2nd edn., trans. Monsen, H., vol. 1. Philadelphia: W. B. Saunders Company.Google Scholar
Perry, T. J. & Goldwater, B. C. (1987). A passive behavioral measure of sleep onset in high-alpha and low alpha subjects. Psychophysiology, 24: 657665.Google Scholar
Petrides, M., Cadoret, G., & Mackey, S. (2005). Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature, 435: 12351238.Google Scholar
Picard, R. W. (1997). Affective Computing. Cambridge, MA: MIT Press.Google Scholar
Pikoff, H. (1984). Is the muscular model of headache still viable?Headache, 24: 186198.Google Scholar
Pivik, R. T. (2007). Sleep and dreaming. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (eds.), Handbook of Psychophysiology (pp. 633664). Cambridge University Press.Google Scholar
Platt, J. R. (1964). Strong inference. Science, 146: 347353.Google Scholar
Porter, S., ten Brinke, L., Baker, A., & Wallace, B. (2011). Would I lie to you? “Leakage” in deceptive facial expressions relates to psychopathy and emotional intelligence. Personality and Individual Difference, 51: 133137.Google Scholar
Porter, S., ten Brinke, L., & Wallace, B. (2012). Secrets and lies: involuntary leakage in deceptive facial expressions as a function of emotional intensity. Journal of Nonverbal Behavior, 36: 2337.Google Scholar
Pratt, F. H. (1917). The all-or-none principle in graded response of skeletal muscle. American Journal of Physiology, 44: 517542.Google Scholar
Pratt, F. H. & Eisenberger, J. P. (1919). The quantal phenomena in muscle: methods with further evidence of the all-or-none principle in graded response for the skeletal fibre. American Journal of Physiology, 49: 154.Google Scholar
Pressman, M. R. & Orr, W. C. (eds.) (1997). Understanding Sleep: The Evaluation and Treatment of Sleep Disorders. Washington, DC: American Psychological Association.Google Scholar
Pritchard, D. (1995). EMG levels in children who suffer from severe headache. Headache, 35: 554556.Google Scholar
Pullman, S. K., Goodin, D. S., Marquinez, A. I., Tabbal, S., & Rubin, M. (2000). Clinical utility of surface EMG: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology, 55: 171177.Google Scholar
Rainoldi, A., Melchiorri, G., & Caruso, I. (2004). A method for positioning electrodes during surface EMG recordings in lower limb muscles. Journal of Neuroscience Methods, 134: 3743.Google Scholar
Rajecki, D. W. (1983). Animal aggression: implications for human aggression. In Geen, R. G. & Donnerstein, E. J. (eds.), Aggression: Theoretical and Empirical Reviews, Vol. 1 (pp. 189211). New York: Academic Press.Google Scholar
Rankin, R. E. & Campbell, D. (1955). Galvanic skin response to negro and white experimenters. Journal of Abnormal and Social Psychology, 51: 3033.Google Scholar
Ravaja, N., Kallinen, K., Saari, T., & Keltikangas-Jarvinen, L. (2004). Suboptimal exposure to facial expressions when viewing video messages from a small screen: effects on emotion, attention, and memory. Journal of Experimental Psychology: Applied, 10: 120131.Google Scholar
Rieger, R. & Deng, S. (2013). Double-differential recording and AGC using microcontrolled variable gain ASIC. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21: 4754.Google Scholar
Rimehaug, T. & Sveback, S. (1987). Psychogenic muscle tension: the significance of motivation and negative affect in perceptual-cognitive task performance. International Journal of Psychophysiology, 5: 97106.Google Scholar
Rissen, D., Melin, B., Sandsjo, L., Dohns, I., & Lundberg, U. (2000). Surface EMG and psychophysiological stress reactions in women during repetitive work. European Journal of Applied Physiology, 83: 215222.Google Scholar
Ritz, T., Dahme, B., & Claussen, C. (1999). Gradients of facial EMG and cardiac activity during emotional stimulation. Journal of Psychophysiology, 13: 317.Google Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2: 661670.Google Scholar
Rosenthal, R. & Rosnow, R. (eds.) (1969). Artifact in Behavioral Research. New York: Academic Press.Google Scholar
Rossi, A. M. (1959). An evaluation of the manifest anxiety scale by the use of electromyography. Journal of Experimental Psychology, 58: 6469.Google Scholar
Roy, S. H., De Luca, C., Emley, M., Oddsson, L. I. E., Buijis, R. J. C., Levins, J., … & Jabre, J. F. (1997). Classification of back muscle impairment based on the surface electromyographic signal. Journal of Rehabilitation Research and Development, 34: 405414.Google Scholar
Russell, J. A. & Fernández-Dols, J. M. (eds.) (1997). The Psychology of Facial Expression. Cambridge University Press.Google Scholar
Sacco, I. C. N., Gomes, A. A., Otuzi, M. E., Pripas, D., & Onodera, A. N. (2009). A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions. Journal of Neuroscience Methods, 180: 133137.Google Scholar
Sato, W., Fujimura, T., Kochiyama, T., & Suzuki, N. (2013). Relationships among facial mimicry, emotional experience, and emotion recognition. PLoS One, 8: e57889. doi: 10.1371/journal.pone.0057889.Google Scholar
Schmidt-Nielsen, K. (1997). Animal Physiology: Adaptation and Environment, 5th edn. Cambridge University Press.Google Scholar
Schwartz, G. E., Fair, P. L., Salt, P., Mandel, M. R., & Klerman, G. L. (1976). Facial muscle patterning to affective imagery in depressed and nondepressed subjects. Science, 192: 489491.Google Scholar
Seiler, R. (1973). On the function of facial muscles in different behavioral situations: a study based on the muscle morphology and electromyography. American Journal of Physical Anthropology, 38: 567572.Google Scholar
Shaw, W. A. (1940). The relation of muscular action potentials to imaginal weight lifting. Archives of Psychology, 35: 150.Google Scholar
Shergill, G. S., Sarrafzadeh, A., Diegel, O., & Shekar, A. (2008). Computerized sales assistants: the application of computer technology to measure consumer interest – a conceptual framework. Journal of Electronic Commerce Research, 9: 176191.Google Scholar
Sherrington, C. S. (1923 [1906]). The Integrative Actions of the Nervous System. New Haven, CT: Yale University Press.Google Scholar
Shimizu, A. & Inoue, T. (1986). Dreamed speech and speech muscle activity. Psychophysiology, 23: 210215.Google Scholar
Sims, T. B., van Reekum, C. M., Johnstone, T., & Chakrabarti, B. (2012). How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding faces. Psychophysiology, 49: 9981004.Google Scholar
Skinner, B. F. (1931). The concept of the reflex in the description of behavior. Journal of General Psychology: Experimental, Theoretical, Clinicial, and Historical Psychology, 5: 427457.Google Scholar
Sloan, D. M., Bradley, M. M., Dimoulas, E., & Lang, P. J. (2002). Looking at facial expressions: dysphoria and facial EMG. Biological Psychology, 60: 7990.Google Scholar
Smith, J. D. & Minda, J. P. (2001). Journey to the center of the category: the dissociation in amnesia between categorization and recognition. Journal of Experimental Psychology: Human Learning, Memory & Cognition, 27: 9841002.Google Scholar
Smith, R. R. & Kier, W. M. (1989). Trunks, tongues, and tentacles: moving with skeletons of muscle. American Scientist, 77: 2835.Google Scholar
Sonnby-Borgström, M. & Jönsson, P. (2003). Models-of-self and models-of-others as related to facial muscle reactions at different levels of cognitive control. Scandinavian Journal of Psychology, 44: 141151.CrossRefGoogle ScholarPubMed
Spencer, H. (1870). Principles of Psychology, 2nd edn. London: Williams & Norgate.Google Scholar
Sperry, R. (1952). Neurology and the mind–brain problem. American Scientist, 40: 291312.Google Scholar
Stark, R., Walter, B., Schienle, A., & Vaitl, D. (2005). Psychophysiological correlates of disgust and disgust sensitivity. Journal of Psychophysiology, 19: 5060.Google Scholar
Sternbach, R. A. (1966). Principles of Psychophysiology. New York: Academic Press.Google Scholar
Sternberg, S. (1969). The discovery of processing stages: extensions of Donder’s method. Acta Psychologica, 30: 276315.Google Scholar
Stone, E. & Skubic, M. (2011). Evaluation of an inexpensive depth camera for in-home gait assessment. Journal of Ambient Intelligence and Smart Environments, 3: 349361.Google Scholar
Stoyva, J. & Budzynski, T. (1974). Cultivated low arousal: an anti-stress response? In DiCara, L. V. (ed.), Recent Advances in Limbic and Autonomic Nervous System Research (pp. 370394). New York: Plenum Press.Google Scholar
Strack, F., Martin, L. L., & Stepper, J. (1988). Inhibitory and facilitatory conditions of the human smile: a nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology, 54: 768777.Google Scholar
Stringham, J. M., Fuld, K., & Wenzel, A. J. (2003). Action spectrum for photophobia. Journal of the Optical Society of America, 20: 18521858.Google Scholar
Sumitsuji, N., Nan’no, H., Kuwata, Y., & Ohta, Y. (1980). The effects of the noise due to the jet airplane to the human facial expression (EMG study), EEG changes and their manual responses to the various sleeping stages of the subjects. Electromyography and Clinical Neurophysiology, 20: 4972.Google Scholar
Svebak, S., Dalen, K., & Storfjell, O. (1981). The psychological significance of task-induced tonic changes in somatic and autonomic activity. Psychophysiology, 18: 403409.Google Scholar
Swazey, J. P. (1969). Reflexes and Motor Integration: Sherrington’s Concept of Integrative Action. Cambridge, MA: Harvard University Press.Google Scholar
Tassinary, L. G. & Cacioppo, J. T. (1992). Unobservable facial actions and emotion. Psychological Science, 3: 2833.Google Scholar
Tassinary, L. G., Cacioppo, J. T., & Geen, T. R. (1989). A psychometric study of surface electrode placements for facial electromyographic recording: I. The brow and cheek muscle regions. Psychophysiology, 26: 116.Google Scholar
Tassinary, L. G., Cacioppo, J. T., & Vanman, E. (2007). The skeletomotor system: surface electromyography. In Cacioppo, J. T., Tassinary, L. G., and Bernston, G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 267299). Cambridge University Press.Google Scholar
Tassinary, L. G., Orr, S. P., Wolford, G., Napps, S. E., & Lanzetta, J. T. (1984). The role of awareness in affective information processing: an exploration of the Zajonc hypothesis. Bulletin of the Psychonomic Society, 22: 489492.Google Scholar
Tassinary, L. G., Vanman, E., Geen, T. R., & Cacioppo, J. T. (1987). Optimizing surface electrode placements for facial EMG recordings: guidelines for recording from the perioral muscle region. Psychophysiology, 24: 615616.Google Scholar
ten Brinke, L., Porter, S., & Baker, A. (2012). Darwin the detective: observable facial muscles reveal emotional high-stakes lies. Evolution and Human Behavior, 33: 411416.Google Scholar
Teuber, H. L. (1955). Physiological psychology. Annual Review of Psychology, 6: 267294.Google Scholar
Thorson, A. M. (1925). The relation of tongue movements to internal speech. Journal of Experimental Psychology, 8: 132.Google Scholar
Tomovic, R. & Bellman, R. (1970). A systems approach to muscle control. Mathematical Biosciences, 8: 265277.Google Scholar
Tourangeau, R. & Ellsworth, P. C. (1979). The role of facial response in the experience of emotion. Journal of Personality and Social Psychology, 37: 15191531.Google Scholar
Trepman, E., Gellman, R. E., Solomon, R., Murthy, K. R., Micheli, L. J., & De Luca, C. (1994). Electromyographic analysis of standing posture and demi-plié in ballet and modern dancers. Medicine and Science in Sports and Exercise, 26: 771782.Google Scholar
Triplett, N. (1898). The dynamogenic factors in pacemaking and competition. American Journal of Psychology, 9: 507533.Google Scholar
Tyron, W. W. (1991). Activity Measurement in Psychology and Medicine. New York: Plenum Press.Google Scholar
van Boxtel, A. (2001). Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles. Psychophysiology, 38: 2234.Google Scholar
van Boxtel, A. (2010). Facial EMG as a tool for inferring affective states. In Spink, A. J., Grieco, F., Krips, O. E., Loijens, L. W. S., Noldus, L. P. J. J., & Zimmerman, P. H. (eds.), Proceedings of Measuring Behavior 2010 (pp. 104108). Wageningen: Noldus Information Technology.Google Scholar
van Boxtel, A., Damen, E. J. P., & Brunia, C. H. M. (1996). Anticipatory EMG responses of the pericranial muscles in relation to heart rate during a warned simple reaction time task. Psychophysiology, 33: 576583.Google Scholar
van Boxtel, A., Goudswaard, P., & Janssen, K. (1983). Changes in EMG power spectra of facial and jaw-elevator muscles during fatigue. Journal of Applied Physiology, 54: 5158.Google Scholar
van Boxtel, A., Goudswaard, P., & Shomaker, L. R. B. (1984). Amplitude and bandwidth of the frontalis surface EMG: effects of electrode parameters. Psychophysiology, 21: 699707.Google Scholar
van Boxtel, A. & Jessurun, M. (1993). Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an index of effort during a two-choice serial reaction task. Psychophysiology, 30: 589604.Google Scholar
Van der Linden, J., Schoonderwaldt, E., Bird, J., & Johnson, R. (2011). Musicjacket: combining motion capture and vibrotactile feedback to teach violin bowing. IEEE Transactions on Instrumentation and Measurement, 60: 104113.Google Scholar
Vanman, E. J., Boehmelt, A. H., Dawson, M. E., & Schell, A. M. (1996). The varying time course of attentional and affective modulation of the startle eyeblink response. Psychophysiology, 33: 691697.Google Scholar
Vanman, E. J., Paul, B. Y., Ito, T. A., & Miller, N. (1997). The modern face of prejudice and structural features that moderate the effect of cooperation on affect. Journal of Personality and Social Psychology, 73: 941959.Google Scholar
Vanman, E. J., Saltz, J. L., Nathan, L. R., & Warren, J. A. (2004). Racial discrimination by low-prejudiced whites: facial movements as implicit measures of attitudes related to behavior. Psychological Science, 15: 711714.Google Scholar
Vaughan, K. B. & Lanzetta, J. T. (1980). Vicarious instigation and conditioning of facial expressive and autonomic responses to a model’s expressive display of pain. Journal of Personality and Social Psychology, 13: 909923.Google Scholar
Vaughan, K. B. & Lanzetta, J. T. (1981). The effects of modification of expressive displays on vicarious emotional arousal. Journal of Experimental Social Psychology, 17: 1630.Google Scholar
Vitti, M., Basmajian, J. V., Ouelette, P. L., Mitchell, D. L., Eastman, W. P., & Seaborn, R. D. (1975). Electromyographic investigations of the tongue and circumoral muscular sling with fine-wire electrodes. Journal of Dental Research, 54: 844849.Google Scholar
Vrana, S. R. & Rollock, D. (1998). Physiological response to a minimal social encounter: effects of gender, ethnicity, and social context. Psychophysiology, 35: 462469.Google Scholar
Vural, E., Bartlett, M., Littlewort, G., Cetin, M., Ercil, A., & Movellan, J. (2010). Discrimination of moderate and acute drowsiness based on spontaneous facial expressions. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR) (pp. 38743877). Piscataway, NJ: IEEE.Google Scholar
Waersted, M. & Westgaard, R. H. (1996). Attention-related muscle activity in different body regions during VDU work with minimal physical activity. Ergonomics, 39: 661676.Google Scholar
Warren, W. H. (2006). Dynamics of perception and action. Psychological Review, 113: 358389.Google Scholar
Wartenberg, R. (1946). The Examination of Reflexes: A Simplification. Chicago: Year Book Publishers.Google Scholar
Washburn, M. F. (1916). Movement and Imagery: Outlines of a Motor Theory of the Complexer Mental Processes. Boston, MA: Houghton Mifflin.Google Scholar
Waters, K. (1992). A physical model of facial tissue and muscle articulation derived from computer tomography data. Visualization in Biomedical Computing, 1808: 574583.Google Scholar
Weaver, C. V. (1977). Descriptive anatomical and quantitative variation in human facial musculature and the analysis of bilateral asymmetry. Dissertation Abstracts International (University Microfilms, no. 77-24, 305).Google Scholar
Wells, G. L. & Petty, R. E. (1980). The effects of overt head-movements on persuasion: compatibility and incompatibility of responses. Basic and Applied Social Psychology, 1: 219230.Google Scholar
Wexler, B. E., Warrenburg, S., Schwartz, G. E., & Jamner, L. D. (1992). EEG and EMG responses to emotion-evoking stimuli processed without conscious awareness. Neuropsychologia, 30: 10651079.Google Scholar
Wheatley, J. R., Tangel, D. J., Mezzanotte, W. S., & White, D. P. (1993). Influence of sleep on the alae nasi EMG and nasal resistance in normal man. Journal of Applied Physiology, 75: 626632.Google Scholar
Whitehill, J., Serpell, Z., Lin, Y., Foster, A., & Movellan, J. R. (2014). The faces of engagement: automatic recognition of student engagement from facial expressions. IEEE Transactions on Affective Computing, 5: 8698.Google Scholar
Wolf, K., Mass, R., Kiefer, F., Eckert, K., Weinhold, N., Wiedemann, K., & Naber, D. (2004). The influence of olanzapine on facial expressions of emotions in schizophrenia: an improved facial EMG study. German Journal of Psychiatry, 7: 1419.Google Scholar
Wolpert, D. (2011). The real reason for brains [Video file]. Retrieved from Scholar
Wolpert, D., Pearson, K. G., & Ghez, C. (2013). The organization and planning of movement. In Kandel, E. R., Schwartz, J. H., Jessel, T. M., Sieglbaum, S. A., & Hudspeth, A. J. (eds.), Principles of Neural Science, 5th edn. (pp. 743767). New York: Elsevier.Google Scholar
Woodworth, R. S. & Schlosberg, H. (1954). Experimental Psychology, rev. edn. New York: Holt.Google Scholar
Wu, C. H. (1984). Electric fish and the discovery of animal electricity. American Scientist, 72: 598607.Google Scholar
Yucha, C. B. & Montgomery, D. (2008). Evidence-Based Practice in Biofeedback and Neurofeedback. Wheat Ridge, CO: Association for Applied Psychophysiology and Biofeedback.Google Scholar
Zajonc, R. B. (1965). Social facilitation. Science, 149: 269274.Google Scholar
Zipp, P. (1982). Recommendations for the standardization of lead positions in surface electromyography. European Journal of Applied Physiology, 50: 4154.Google Scholar