Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T00:02:37.878Z Has data issue: false hasContentIssue false

10 - The Electrodermal System

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreassi, J. L. (2007). Psychophysiology: Human Behavior and Physiological Response, 5th edn. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Aue, T., Hoeppli, M., Piguet, C., Sterpenich, V., & Vuilleumier, P. (2013). Visual avoidance in phobia: particularities in neural activity, autonomic responding, and cognitive risk evaluations. Frontiers in Human Neuroscience, 7: 194. doi: 10.3389/fnhum.2013.00194CrossRefGoogle ScholarPubMed
Ax, A. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15: 433442.Google Scholar
Bach, D. R. (2014). Sympathetic nerve activity can be estimated from skin conductance responses: a comment on Henderson et al. (2012). NeuroImage, 84: 122123.CrossRefGoogle Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50: 715.Google Scholar
Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19: 54735481.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275: 12931295.Google Scholar
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269: 11151118.Google Scholar
Benedek, M. & Kaernbach, C. (2010). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47: 647658.Google ScholarPubMed
Ben-Shakhar, G. (1985). Standardization within individuals: a simple method to neutralize individual differences in skin conductance. Psychophysiology, 22: 292299.CrossRefGoogle ScholarPubMed
Bernstein, A. S., Frith, C., Gruzelier, J., Patterson, T., Straube, E., Venables, P., & Zahn, T. (1982). An analysis of the skin conductance orienting response in samples of American, British, and German schizophrenics. Biological Psychology, 14: 155211.Google Scholar
Bernstein, A. S., Taylor, K. W., Starkey, P., Juni, S., Lubowsky, J., & Paley, H. (1981). Bilateral skin conductance, finger pulse volume, and EEG orienting response to tones of differing intensities in chronic schizophrenics and controls. Journal of Nervous and Mental Disease, 169: 513528.Google Scholar
Blair, R. J., Jones, L., Clark, F., & Smith, M. (1997). The psychopathic individual: a lack of responsiveness to distress cues?Psychophysiology, 34: 192198.CrossRefGoogle ScholarPubMed
Bloch, V. (1993). On the centennial of the discovery of electrodermal activity. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Research (pp. 16). New York: Plenum Press.Google Scholar
Boucsein, W. (2012). Electrodermal Activity, 2nd edn. New York: Springer.Google Scholar
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google Scholar
Boyd, R. W. & DiMascio, A. (1954). Social behavior and autonomic physiology: a sociophysiologic study. Journal of Nervous and Mental Disease, 120: 207212.Google Scholar
Bradley, M. M. (2009). Natural selective attention: orienting and emotion. Psychophysiology, 46: 111.CrossRefGoogle ScholarPubMed
Bradley, M. M. & Lang, P. J. (1999). International Affective Digitized Sounds (IADS): Stimuli, Instruction Manual and Affective Ratings. Technical Report No. B-2, Center for Research in Psychophysiology, University of Florida, Gainesville.Google Scholar
Brekke, J. S., Raine, A., Ansel, M., Lencz, T., & Bird, L. (1997). Neuropsychological and psychophysiological correlates of psychosocial functioning in schizophrenia. Schizophrenia Bulletin, 23: 1928.Google Scholar
Brekke, J. S., Raine, A., & Thomson, C. (1995). Cognitive and psychophysiological correlates of positive, negative, and disorganized symptoms in the schizophrenia spectrum. Psychiatry Research, 57: 241250.Google Scholar
Brown, G., Birley, J. L. T., & Wing, J. K. (1972). Influence of family life on the course of schizophrenia. British Journal of Psychiatry, 121: 241248.Google Scholar
Cheng, D. T., Knight, D. C., Smith, C. N., & Helmstetter, F. J. (2006). Human amygdala activity during the expression of fear responses. Behavioral Neuroscience, 120: 11871195.Google Scholar
Cheng, D. T., Richards, J., & Helmstetter, F. J. (2007). Activity in the human amygdala corresponds to early, rather than late period autonomic responses to a signal for shock. Learning & Memory, 14: 485490.Google Scholar
Crider, A. (1993). Electrodermal response lability-stability: individual difference correlates. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Research (pp. 173186). New York: Plenum Press.Google Scholar
Crider, A. (2008). Personality and electrodermal response lability: an interpretation. Applied Psychophysiology and Biofeedback, 33: 141148.Google Scholar
Crider, A. & Augenbraun, C. B. (1975). Auditory vigilance correlates of electrodermal response habituation speed. Psychophysiology, 12: 3640.Google Scholar
Crider, A., Kremen, W. S., Xian, H., Jacobson, K. C., Waterman, B., Eisen, S. A., … & Lyons, M. J. (2004). Stability, consistency, and heritability of electrodermal response lability in middle-aged male twins. Psychophysiology, 41: 501509.Google Scholar
Critchley, H. D. (2002). Electrodermal responses: what happens in the brain. Neuroscientist, 8: 132142.CrossRefGoogle ScholarPubMed
Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. International Journal of Psychophysiology, 73: 8894.Google Scholar
Critchley, H. D., Elliot, R., Mathias, C. J., & Dolan, R. J. (2000). Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. Journal of Neuroscience, 20: 30333040.Google Scholar
Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron, 29: 537545.Google Scholar
Cuthbert, B. N., Bradley, M. M., & Lang, P. J. (1996). Probing picture perception: activation and emotion. Psychophysiology, 33: 103111.Google Scholar
Damasio, A. R. (1994). Descartes’ Error: Emotion, Reason, and the Human Brain. New York: Grosset/Putnam.Google Scholar
Darrow, C. W. (1927). Sensory, secretory, and electrical changes in the skin following bodily excitation. Journal of Experimental Psychology, 10: 197226.Google Scholar
Darrow, C. W. (1937). Neural mechanisms controlling the palmar galvanic skin reflex and palmar sweating. Archives of Neurology and Psychiatry, 37: 641663.Google Scholar
Davies, D. R. & Parasuraman, R. (1982). The Psychology of Vigilance. London: Academic Press.Google Scholar
Dawson, M. E. & Biferno, M. A. (1973). Concurrent measurement of awareness and electrodermal classical conditioning. Journal of Experimental Psychology, 101: 5562.CrossRefGoogle ScholarPubMed
Dawson, M. E., Gitlin, M., Schell, A. M., Nuechterlein, K. H., & Ventura, J. (1994). Autonomic abnormalities in schizophrenia: state or trait indicators? Archives of General Psychiatry, 51: 813824.Google Scholar
Dawson, M. E. & Nuechterlein, K. H. (1984). Psychophysiological dysfunctions in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10: 204232.CrossRefGoogle ScholarPubMed
Dawson, M. E., Nuechterlein, K. H., & Schell, A. M. (1992a). Electrodermal anomalies in recent-onset schizophrenia: relationships to symptoms and prognosis. Schizophrenia Bulletin, 18: 295311.Google Scholar
Dawson, M. E., Neuchterlein, K. H., Schell, A. M., & Mintz, J. (1992b). Concurrent and predictive electrodermal correlates of symptomatology in recent-onset schizophrenic patients. Journal of Abnormal Psychology, 101: 153164.Google Scholar
Dawson, M. E. & Schell, A. M. (1985). Information processing and human autonomic classical conditioning. In Ackles, P. K., Jennings, J. R., & Coles, M. G. H. (eds.), Advances in Psychophysiology, Volume 1 (pp. 89165). Greenwich, CT: JAI Press.Google Scholar
Dawson, M. E. & Schell, A. M. (2002). What does electrodermal activity tell us about prognosis in the schizophrenia spectrum?Schizophrenia Research, 54: 8793.CrossRefGoogle ScholarPubMed
Dawson, M. E., Schell, A. M., Rissling, A., Ventura, J., Subotnik, K. L., & Nuechterlein, K. H. (2010). Psychophysiological prodromal signs of schizophrenic relapse: a pilot study. Schizophrenia Research, 123: 6467.CrossRefGoogle ScholarPubMed
Dethier, V., Bruneau, N., & Philippot, P. (2015). Attentional focus during exposure in spider phobia: the role of schematic versus non-schematic imagery. Behaviour Research and Therapy, 65: 8692.Google Scholar
Dittes, J. E. (1957). Galvanic skin response as a measure of patient’s reaction to therapist’s permissiveness. Journal of Abnormal and Social Psychology, 55: 295303.Google Scholar
Dubé, A., Duquette, M., Roy, M., Lepore, F., Duncan, G., & Rainville, P. (2009). Brain activity associated with the electrodermal reactivity to acute heat pain. NeuroImage, 45: 169180.Google Scholar
Edelberg, R. (1967). Electrical properties of the skin. In Brown, C. C. (ed.), Methods in Psychophysiology (pp. 153). Baltimore, MD: Williams & Wilkens.Google Scholar
Edelberg, R. (1972). Electrical activity of the skin: its measurement and uses in psychophysiology. In Greenfield, N. S. & Sternbach, R. A. (eds.), Handbook of Psychophysiology (pp. 367418). New York: Holt.Google Scholar
Edelberg, R. (1993). Electrodermal mechanisms: a critique of the two-effector hypothesis and a proposed replacement. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Research (pp. 729). New York: Plenum Press.Google Scholar
Esteves, F., Parra, C., Dimberg, U., & Ohman, A. (1994). Nonconscious associative learning: Pavlovian conditioning of skin conductance responses to masked fear-relevant facial stimuli. Psychophysiology, 31: 375385.CrossRefGoogle ScholarPubMed
Fan, J., Xu, P., Van Dam, N. T., Eilam-Stock, T., Gu, X., Luo, Y., & Hof, P. R. (2012). Spontaneous brain activity relates to autonomic arousal. Journal of Neuroscience, 32: 1117611186.CrossRefGoogle ScholarPubMed
Féré, C. (1888). Note on changes in electrical resistance under the effect of sensory stimulation and emotion. Comptes Rendus des Séances de la Société de Biologie, (Series 9), 5: 217219.Google Scholar
Ferguson, G. A. & Takane, Y. (1989). Statistical Analysis in Psychology and Education, 6th edn. New York: McGraw-Hill.Google Scholar
Fletcher, R. R., Dobson, K., Goodwin, M. S., Eydgahi, H., Wilder-Smith, O., Fernholz, D., … & Picard, R. W. (2010). iCalm: wearable sensor and network architecture for wirelessly communicating and logging autonomic activity. IEEE Transactions on Information Technology in Biomedicine, 11: 215223.Google Scholar
Fowles, D. C. (1974). Mechanisms of electrodermal activity. In Thompson, R. F. & Patterson, M. M. (eds.), Methods in Physiological Psychology, Part C: Receptor and Effector Processes (pp. 231271). New York: Academic Press.Google Scholar
Fowles, D. C. (1986). The eccrine system and electrodermal activity. In Coles, M. G. H., Donchin, E., & Porges, S. W. (eds.), Psychophysiology: Systems, Processes, and Applications (pp. 5196). New York: Guilford Press.Google Scholar
Fowles, D. C. (1993). Electrodermal activity and antisocial behavior: empirical findings and theoretical issues. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Research (pp. 223237). New York: Plenum Press.Google Scholar
Fowles, D. C., Christie, M. J., Edelberg, R., Grings, W. W., Lykken, D. T., & Venables, P. H. (1981). Publication recommendations for electrodermal measurements. Psychophysiology, 18: 232239.Google Scholar
Freedman, L. W., Scerbo, A. S., Dawson, M. E., Raine, A., McClure, W. O., & Venables, P. H. (1994). The relationship of sweat gland count to electrodermal activity. Psychophysiology, 31: 196200.Google Scholar
Freixa i Baque, E. (1982). Reliability of electrodermal measures: a compilation. Biological Psychology, 14: 219229.Google Scholar
Frith, C. D., Stevens, M., Johnstone, E. C., & Crow, T. J. (1979). Skin conductance responsivity during acute episodes of schizophrenia as a predictor of symptomatic improvement. Psychological Medicine, 9: 101106.Google Scholar
Fuentes, I., Merita, M. G., Miquel, M., & Rojo, J. (1993). Relationships between electrodermal activity and symptomatology in schizophrenia. Psychopathology, 26: 4752.Google Scholar
Fung, M. T., Raine, A., Loeber, R., Lynam, D. R., Steinhauer, S. R., Venables, P. H., & Stouthamer-Loeber, M. (2005). Reduced electrodermal activity in psychopathy-prone adolescents. Journal of Abnormal Psychology, 114: 187196.Google Scholar
Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010). Association of poor childhood fear conditioning and adult crime. American Journal of Psychiatry, 167: 5660.Google Scholar
Gentil, A. F., Eskandar, E. N., Marci, C. D., Evans, K. C., & Dougherty, D. D. (2009). Physiological responses to brain stimulation during limbic surgery: further evidence of anterior cingulate modulation of autonomic arousal. Biological Psychiatry, 66: 695701.Google Scholar
Green, M. F., Nuechterlein, K. H., & Satz, P. (1989). The relationship of symptomatology and medication to electrodermal activity in schizophrenia. Psychophysiology, 26: 148157.Google Scholar
Green, S. R., Kragel, P. A., Fecteau, M. E., & LaBar, K. S. (2014). Development and validation of an unsupervised scoring system (autonomate) for skin conductance response analysis. International Journal of Psychophysiology, 91: 186193.Google Scholar
Grey, S. J. & Smith, B. L. (1984). A comparison between commercially available electrode gels and purpose-made gel, in the measurement of electrodermal activity. Psychophysiology, 21: 551557.Google Scholar
Grings, W. W. (1974). Recording of electrodermal phenomena. In Thompson, R. F. & Patterson, M. M. (eds.), Bioelectric Recording Technique, Part C: Receptor and Effector Processes (pp. 273296). New York: Academic Press.Google Scholar
Grings, W. W. & Lockhart, R. A. (1965). Problems of magnitude measurement with multiple GSRs. Psychological Reports, 17: 979982.CrossRefGoogle ScholarPubMed
Grings, W. W. & Schell, A. M. (1969). Magnitude of electrodermal response to a standard stimulus as a function of intensity and proximity of a prior stimulus. Journal of Comparative and Physiological Psychology, 67: 7782.Google Scholar
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74: 224237.Google Scholar
Gross, J. J. & Levenson, R. W. (1993). Emotional suppression: physiology, self-report, and expressive behavior. Journal of Personality and Social Psychology, 64: 970986.Google Scholar
Haddad, A. D. M., Pritchett, D., Lissek, S., & Lau, J. Y. F. (2012). Trait anxiety and fear responses to safety cues: stimulus generalization or sensitization? Journal of Psychopathology and Behavioral Assessment, 34: 323331.Google Scholar
Hare, R. D. (1965). Temporal gradient of fear arousal in psychopaths. Journal of Abnormal Psychology, 70: 442445.Google Scholar
Hare, R. D. (1991). The Hare Psychopathy Checklist – Revised. Toronto: Multi-Health Systems.Google Scholar
Hassett, J. (1978). A Primer of Psychophysiology. San Francisco: W. H. Freeman and Company.Google Scholar
Hastrup, J. L. (1979). Effects of electrodermal lability and introversion on vigilance decrement. Psychophysiology, 16: 302310.Google Scholar
Hazlett, H., Dawson, M. E., Schell, A. M., & Nuechterlein, K. H. (1997). Electrodermal activity as a prodromal sign in schizophrenia. Biological Psychiatry, 41: 111113.CrossRefGoogle ScholarPubMed
Heeren, A., Reese, H. E., McNally, R. J., & Philippot, P. (2012). Attention training toward and away from threat in social phobia: effects on subjective, behavioral, and physiological measures of anxiety. Behaviour Research and Therapy, 50: 3039.Google Scholar
Hollister, J. M., Mednick, S. A., Brennan, P., & Cannon, T. D. (1994). Impaired autonomic nervous system habituation in those at genetic risk for schizophrenia. Archives of General Psychiatry, 51: 552558.Google Scholar
Hot, P., Naveteur, J., Leconte, P., & Sequeira, H. (1999). Diurnal variations of tonic electrodermal activity. International Journal of Psychophysiology, 33: 223230.Google Scholar
Hugdahl, K. (1984). Hemispheric asymmetry and bilateral electrodermal recordings: a review of the evidence. Psychophysiology, 21: 371393.Google Scholar
Hugdahl, K. (1995). Psychophysiology: The Mind–Body Perspective. Cambridge, MA: Harvard University Press.Google Scholar
Hugdahl, K. & Öhman, A. (1977). Effects of instruction on acquisition and extinction of electrodermal responses to fear-relevant stimuli. Journal of Experimental Psychology: Human Learning and Memory, 3: 608618.Google Scholar
Hultman, C. M., Öhman, A., Öhlund, L. S., Wieselgren, I., Lindström, L. H., & Öst, L. (1996). Electrodermal activity and social network as predictors of outcome of episodes in schizophrenia. Journal of Abnormal Psychology, 105: 626636.Google Scholar
Iacono, W. G., Ficken, J. W., & Beiser, M. (1993). Electrodermal nonresponding in first-episode psychosis as a function of stimulus significance. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Activity (pp. 239256). New York: Plenum Press.Google Scholar
Iacono, W. G., Ficken, J. W., & Beiser, M. (1999). Electrodermal activation in first-episode psychotic patients and their first-degree relatives. Psychiatry Research, 88: 2539.Google Scholar
Isen, J. D., Iacono, W. G., Malone, S. M., & McGue, M. (2012). Examining electrodermal hyporeactivity as a marker of externalizing psychopathology: a twin study. Psychophysiology, 49: 10391048.Google Scholar
Isen, J. D., Raine, A., Baker, L., Dawson, M., Bezdjian, S., & Lozano, D. I. (2010). Sex-specific association between psychopathic traits and electrodermal reactivity in children. Journal of Abnormal Psychology, 119: 216225.CrossRefGoogle ScholarPubMed
Ivory, J. D. & Kalyanaraman, S. (2007). The effects of technological advancement and violent content in video games on players’ feelings of presence, involvement, physiological arousal, and aggression. Journal of Communication, 57: 532555.Google Scholar
Jennings, J. R. (1986). Bodily changes during attending. In Coles, M. G. H., Donchin, E., & Porges, S. W. (eds.), Psychophysiology: Systems, Processes, and Applications (pp. 268289). New York: Guilford Press.Google Scholar
Kappeler-Setz, C., Gravenhorst, F., Schumm, J., Arnrich, B., & Tröster, G. (2013). Towards long term monitoring of electrodermal activity in daily life. Personal and Ubiquitous Computing, 17: 261271.Google Scholar
Katkin, E. S. (1975). Electrodermal lability: a psychophysiological analysis of individual differences in response to stress. In Sarason, I. G. & Spielberger, C. D. (eds.), Stress and Anxiety, Volume 2 (pp. 141176). Washington, DC: Aldine.Google Scholar
Katsanis, J. & Iacono, W. G. (1994). Electrodermal activity and clinical status in chronic schizophrenia. Journal of Abnormal Psychology, 103: 777783.Google Scholar
Kelsey, R. M. (1991). Electrodermal lability and myocardial reactivity to stress. Psychophysiology, 28: 619631.Google Scholar
Kim, D. K., Shin, Y. M., Kim, C. E., Cho, H. S., & Kim, Y. S. (1993). Electrodermal responsiveness, clinical variables, and brain imaging in male chronic schizophrenics. Biological Psychiatry, 33: 786793.Google Scholar
Kivikangas, J. M., Chanel, G., Cowley, B., Ekman, I., Salminen, M., Järvelä, S., & Ravaja, N. (2011). A review of the use of psychophysiological methods in game research. Journal of Gaming and Virtual Worlds, 3: 181199.Google Scholar
Koelega, H. S. (1990). Vigilance performance: a review of electrodermal predictors. Perceptual and Motor Skills, 70: 10111029.CrossRefGoogle Scholar
Kring, A. M. & Elis, O. (2013). Emotion deficits in people with schizophrenia. Annual Review of Clinical Psychology, 9: 409433.Google Scholar
Kring, A. M. & Neale, J. M. (1996). Do schizophrenic patients show a disjunctive relationship among expressive, experiential, and psychophysiological components of emotion? Journal of Abnormal Psychology, 105: 249257.Google Scholar
Krzywicki, A. T., Berntson, G. G., & O’Kane, B. L. (2014). A non-contact technique for measuring eccrine sweat gland activity using passive thermal imaging. International Journal of Psychophysiology, 94: 2534.Google Scholar
LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E., & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron, 20: 937945.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of the Emotions in Man (pp. 161196). New York: International Universities Press.Google Scholar
Lacey, J. I. & Lacey, B. C. (1958). Verification and extension of the principle of autonomic response-stereotypy. American Journal of Psychology, 71: 5073.Google Scholar
Lader, M. H. & Wing, L. (1966). Psychological Measures, Sedative Drugs, and Morbid Anxiety. London: Oxford University Press.Google Scholar
Landis, C. (1930). Psychology of the psychogalvanic reflex. Psychological Review, 37: 381398.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). International Affective Picture System (IAPS): Technical Manual and Affective Ratings. Center for Research in Psychophysiology, University of Florida, Gainesville.Google Scholar
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology, 30: 261273.CrossRefGoogle ScholarPubMed
Levenson, R. W. & Gottman, J. M. (1983). Marital interaction: physiological linkage and affective exchange. Journal of Personality and Social Psychology, 45: 587597.Google Scholar
Levenson, R. W. & Gottman, J. M. (1985). Physiological and affective predictors of change in relationship satisfaction. Journal of Personality and Social Psychology, 49: 8594.Google Scholar
Lim, S. & Reeves, B. (2009). Being in the game: effects of avatar choice and point of view on psychophysiological responses during play. Media Psychology, 12: 348370.CrossRefGoogle Scholar
Lim, S. & Reeves, B. (2010). Computer agents versus avatars: responses to interactive game characters controlled by a computer or other player. International Journal of Human–Computer Studies, 68: 5768.Google Scholar
Lim, C. L., Rennie, C., Barry, R. J., Bahramali, H., Lazzaro, I., Manor, B., & Gordon, E. (1997). Decomposing skin conductance into tonic and phasic components. International Journal of Psychophysiology, 25: 97109.Google Scholar
Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: a meta-analysis. Behaviour Research and Therapy, 43: 13911424.Google Scholar
Lorber, M. F. (2004). Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis. Psychological Bulletin, 130: 531552.Google Scholar
Lovibond, P. F. & Shanks, D. R. (2002). The role of awareness in Pavlovian conditioning: empirical evidence and theoretical implications. Journal of Experimental Psychology: Animal Behavior Processes, 28: 326.Google Scholar
Lykken, D. T. (1957). A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology, 55: 610.CrossRefGoogle ScholarPubMed
Lykken, D. T. (1959). The GSR in the detection of guilt. Journal of Applied Psychology, 43: 383388.Google Scholar
Lykken, D. T. (1974). Psychology and the lie detector industry. American Psychologist, 29: 725739.Google Scholar
Lykken, D. T. (1995). The Antisocial Personalities. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lykken, D. T., Rose, R. J., Luther, B., & Maley, M. (1966). Correcting psychophysiological measures for individual differences in range. Psychological Bulletin, 66: 481484.Google Scholar
Lykken, D. T. & Venables, P. H. (1971). Direct measurement of skin conductance: a proposal for standardization. Psychophysiology, 8: 656672.CrossRefGoogle ScholarPubMed
Lyytinen, H., Blomberg, A. P., & Näätänen, R. (1992). Event-related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology, 29: 523534.Google Scholar
Mangina, C. A. & Beuzeron-Mangina, J. H. (1996). Direct electrical stimulation of specific human brain structures and bilateral electrodermal activity. International Journal of Psychophysiology, 22: 18.Google Scholar
Matthews, A., Naran, N., & Kirkby, K. C. (2015). Symbolic online exposure for spider fear: habituation of fear, disgust and physiological arousal and predictors of symptom improvement. Journal of Behavior Therapy and Experimental Psychiatry, 47: 129137.Google Scholar
Meijer, E. H., Selle, N. K., Elber, L., & Ben-Shakhar, G. (2014). Memory detection with the concealed information test: a meta analysis of skin conductance, respiration, heart rate, and P300 data. Psychophysiology, 51: 879904.Google Scholar
Montague, J. D. (1963). Habituation of the psycho-galvanic reflex during serial tests. Journal of Psychosomatic Research, 7: 199214.Google Scholar
Morris, J. S., Buchel, C., & Dolan, R. J. (2001). Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning. NeuroImage, 13: 10441052.Google Scholar
Moscovitch, D. A., Suvak, M. K., & Hofmann, S. G. (2010). Emotional response patterns during social threat in individuals with generalized social anxiety disorder and non-anxious controls. Journal of Anxiety Disorders, 24: 785791.Google Scholar
Mosig, C., Merz, C. J., Mohr, C., Adolph, D., Wolf, O. T., Schneider, S., & Zlomuzica, A. (2014). Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals. Frontiers in Behavioral Neuroscience, 8: 328. doi:10.3389/fnbeh.2014.00328Google Scholar
Mundy-Castle, A. C. & McKiever, B. L. (1953). The psychophysiological significance of the galvanic skin response. Journal of Experimental Psychology, 46: 1524.Google Scholar
Munro, L. L., Dawson, M. E., Schell, A. M., & Sakai, L. M. (1987). Electrodermal lability and rapid performance decrement in a degraded stimulus continuous performance task. Journal of Psychophysiology, 1: 249257.Google Scholar
Neumann, E. & Blanton, R. (1970). The early history of electrodermal research. Psychophysiology, 6: 453475.Google Scholar
Nuechterlein, K. H. & Dawson, M. E. (1984). A heuristic vulnerability/stress model of schizophrenic episodes. Schizophrenia Bulletin, 10: 300312.Google Scholar
Öhman, A. (1981). Electrodermal activity and vulnerability to schizophrenia: a review. Biological Psychology, 12: 87145.Google Scholar
Öhman, A. (2009). Of snakes and faces: an evolutionary perspective on the psychology of fear. Scandinavian Journal of Psychology, 50: 543552.Google Scholar
Öhman, A., Dimberg, U., & Esteves, F. (1989a). Preattentive activation of aversive emotions. In Archer, T. & Nilsson, L. G. (eds.), Aversion, Avoidance, and Anxiety (pp. 169193). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Öhman, A. & Mineka, S. (2001). Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychological Review, 108: 483522.Google Scholar
Öhman, A., Öhlund, L. S., Alm, T., Wieselgren, I., Öst, L., & Lindström, L. H. (1989b). Electrodermal nonresponding, premorbid adjustment, and symptomatology as predictors of long-term social functioning in schizophrenics. Journal of Abnormal Psychology, 98: 426435.Google Scholar
Öhman, A. & Soares, J. J. F. (1998). Emotional conditioning to masked stimuli: expectancies for aversive outcomes following nonrecognized fear-relevant stimuli. Journal of Experimental Psychology: General, 127: 6982.Google Scholar
Patterson, J. C., Ungerleider, L. G., & Bandettini, P. A. (2002). Task-independent functional brain activity correlation with skin conductance changes: an fMRI study. NeuroImage, 17: 17971806.Google Scholar
Payne, A. F. H., Dawson, M. E., Schell, A. M., Singh, K., & Courtney, C. G. (2013). Can you give me a hand? A comparison of hands and feet as optimal anatomical sites for skin conductance recording. Psychophysiology, 50: 10651069.Google Scholar
Payne, A. F., Schell, A. M., & Dawson, M. E. (2016). Lapses in skin conductance responding across anatomical sites: comparison of fingers, feet, forehead, and wrist. Psychophysiology, 53: 10841092.Google Scholar
Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: role of the amygdala and vmPFC. Neuron, 43: 897905.Google Scholar
Picard, R. W., Fedor, S., & Ayzenberg, Y. (2015). Multiple arousal theory and daily-life electrodermal activity asymmetry. Emotion Review, 8. doi: 10.1177/1754073914565517Google Scholar
Picard, R. W. & Healey, J. (1997). Affective wearables. Personal Technologies, 1: 231240.Google Scholar
Poh, M., Swenson, N. C., & Picard, R. W. (2010). A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering, 57: 12431252.Google Scholar
Pole, N. (2007). The psychophysiology of posttraumatic stress disorder: a meta-analysis. Psychological Bulletin, 133: 725746.Google Scholar
Prokasy, W. F. & Kumpfer, K. L. (1973). Classical conditioning. In Prokasy, W. F. & Raskin, D. C. (eds.), Electrodermal Activity in Psychological Research (pp. 157202). New York: Academic Press.Google Scholar
Prokasy, W. F. & Raskin, D. C. (eds.) (1973). Electrodermal Activity in Psychological Research. New York: Academic.Google Scholar
Quay, H. C. (1965). Psychopathic personality as pathological stimulation-seeking. American Journal of Psychiatry, 122: 180183.Google Scholar
Raby, K. L., Roisman, G. I., Simpson, J. A., Collins, W. A., & Steele, R. D. (2015). Greater maternal insensitivity in childhood predicts greater electrodermal reactivity during conflict discussions with romantic partners in adulthood. Psychological Science, 26: 348353.Google Scholar
Raine, A., Venables, P. H., & Williams, M. (1990). Relationships between central and autonomic measures of arousal at age 15 years and criminality at age 24 years. Archives of General Psychiatry, 47: 10031007.Google Scholar
Roisman, G. I. (2007). The psychophysiology of adult attachment relationships: autonomic reactivity in marital and premarital interactions. Developmental Psychology, 43: 3953.Google Scholar
Rothemund, Y., Ziegler, S., Hermann, C., Gruesser, S. M., Foell, J., Patrick, C. J., & Flor, H. (2012). Fear conditioning in psychopaths: event-related potentials and peripheral measures. Biological Psychology, 90: 5059.Google Scholar
Roy, J. C., Sequeira, H., & Delerm, B. (1993). Neural control of electrodermal activity: spinal and reticular mechanisms. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Research (pp. 7392). New York: Plenum Press.Google Scholar
Sakai, L. M., Baker, L. A., & Dawson, M. E. (1992). Electrodermal lability: individual differences affecting perceptual speed and vigilance performance in 9 to 16 year-old children. Psychophysiology, 29: 207217.Google Scholar
Sano, A., Picard, R. W., & Stickgold, R. (2014). Quantitative analysis of wrist electrodermal activity during sleep. International Journal of Psychophysiology, 94: 382389.Google Scholar
Scerbo, A. S., Freedman, L. W., Raine, A., Dawson, M. E., & Venables, P. H. (1992). A major effect of recording site on measurement of electrodermal activity. Psychophysiology, 29: 241246.CrossRefGoogle Scholar
Schell, A. M., Dawson, M. E., & Filion, D. L. (1988). Psychophysiological correlates of electrodermal lability. Psychophysiology, 25: 619632.Google Scholar
Schell, A. M., Dawson, M. E., & Marinkovic, K. (1991). Effects of potentially phobic conditioned stimuli on retention, reconditioning, and extinction of the conditioned skin conductance response. Psychophysiology, 28: 140153.Google Scholar
Schell, A. M., Dawson, M. E., Nuechterlein, K. H., Subotnik, K. L., & Ventura, J. (2002). The temporal stability of electrodermal variables over a one-year period in patients with recent-onset schizophrenia and in normal subjects. Psychophysiology, 39: 124132.Google Scholar
Schell, A. M., Dawson, M. E., Rissling, A., Ventura, J., Subotnik, K. L., Gitlin, M. J., & Nuechterlein, K. H. (2005). Electrodermal predictors of functional outcome and negative symptoms in schizophrenia. Psychophysiology, 42: 483492.Google Scholar
Schumm, J., Bachlin, M., Setz, C., Arnrich, B., Roggen, D., & Troster, G. (2008). Effect of movements on the electrodermal response after a startle event. Methods of Information in Medicine, 47: 186191.Google Scholar
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77: 406418.Google Scholar
Sequeira, H. & Roy, J.-C. (1993). Cortical and hypothalamo-limbic control of electrodermal responses. In Roy, J. C., Boucsein, W., Fowles, D. C., & Gruzelier, J. H. (eds.), Progress in Electrodermal Research (pp. 93114). New York: Plenum Press.Google Scholar
Shiban, Y., Pauli, P., & Mühlberger, A. (2013). Effect of multiple context exposure on renewal in spider phobia. Behaviour Research and Therapy, 51: 6874.Google Scholar
Shields, S. A., MacDowell, K. A., Fairchild, S. B., & Campbell, M. L. (1987). Is mediation of sweating cholinergic, adrenergic, or both? A comment on the literature. Psychophysiology, 24: 312319.Google Scholar
Siddle, D., Stephenson, D., & Spinks, J. A. (1983). Elicitation and habituation of the orienting response. In Siddle, D. (ed.), Orienting and Habituation: Perspectives in Human Research (pp. 109182). Chichester: John Wiley.Google Scholar
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. New York: Macmillan.Google Scholar
Spohn, H. E., Coyne, L., Wilson, J. K., & Hayes, K. (1989). Skin-conductance orienting response in chronic schizophrenics: the role of neuroleptics. Journal of Abnormal Psychology, 98: 478486.Google Scholar
Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological Recording. Oxford University Press.Google Scholar
Straube, E. R. (1979). On the meaning of electrodermal nonresponding in schizophrenia. Journal of Nervous and Mental Disease, 167: 601611.Google Scholar
Subotnik, K. I., Schell, A. M., Chilingar, M. S., Dawson, M. E., Ventura, J., Kelly, K. A., … & Nuechterlein, K. H. (2012). The interaction of electrodermal activity and expressed emotion in predicting symptoms in recent-onset schizophrenia. Psychophysiology, 49: 10351038.Google Scholar
Tarchanoff, J. (1890). Galvanic phenomena in the human skin during stimulation of the sensory organs and during various forms of mental activity. Pflugers Archive für die Gesamte Physiologie des Menschen und der Tiere, 46: 4655.Google Scholar
Tarrier, N. & Barrowclough, C. (1989). Electrodermal activity as a predictor of schizophrenic relapse. Psychopathology, 22: 320324.Google Scholar
Tarrier, N., Vaughn, C., Lader, M. H., & Leff, J. P. (1979). Bodily reactions to people and events in schizophrenics. Archives of General Psychiatry, 36: 311315.Google Scholar
Tartz, R., Vartak, A., King, J., & Fowles, D. (2015). Effects of grip force on skin conductance measured from a handheld device. Psychophysiology, 52: 819.Google Scholar
Tranel, D. (2000). Electrodermal activity in cognitive neuroscience: neuroanatomical and neurophysiological correlates. In Lane, R. D. & Nadel, L. (eds.), Cognitive Neuroscience of Emotion (pp. 192224). Oxford University Press.Google Scholar
Vaidyanathan, U., Isen, J. D., Malone, S. M., Miller, M. B., McGue, M., & Iacono, W. G. (2014). Heritability and molecular genetic basis of electrodermal activity: a genome-wide association study. Psychophysiology, 51: 12591271.Google Scholar
Van Bockstaele, B., Verschuere, B., Koster, E. H. W., Tibboel, H., De Houwer, J., & Crombez, G. (2011). Effects of attention training on self-reported, implicit, physiological and behavioural measures of spider fear. Journal of Behavior Therapy and Experimental Psychiatry, 42: 211218.Google Scholar
van Dooren, M., de Vries, J. J., & Janssen, J. H. (2012). Emotional sweating across the body: comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106: 298304.Google Scholar
Vaughn, C. E. & Leff, J. (1976). The influence of family and social factors on the course of psychiatric illness: a comparison of schizophrenic and depressed neurotic patients. British Journal of Psychiatry, 129: 125137.Google Scholar
Vaughn, C. E., Snyder, K. S., Jones, S., Freeman, W. B., & Falloon, I. R. H. (1984). Family factors in schizophrenic relapse: a California replication of the British research on expressed emotion. Archives of General Psychiatry, 41: 11691177.Google Scholar
Veit, R., Konica, L., Klinzing, J. G., Barth, B., Yilmaz, O., & Birbaumer, N. (2013). Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances. Frontiers in Human Neuroscience, 7: 706. doi:10.3389/fnhum.2013.00706Google Scholar
Venables, P. H. & Christie, M. J. (1973). Mechanisms, instrumentation, recording techniques, and quantification of responses. In Prokasy, W. F. & Raskin, D. C. (eds.), Electrodermal Activity in Psychological Research (pp. 1124). New York: Academic Press.Google Scholar
Venables, P. H. & Christie, M. J. (1980). Electrodermal activity. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 367). Chichester: John Wiley.Google Scholar
Venables, P. H. & Mitchell, D. A. (1996). The effects of age, sex and time of testing on skin conductance activity. Biological Psychology, 43: 87101.Google Scholar
Verona, E., Patrick, C. J., Curtin, J., Bradley, M. M., & Lang, P. J. (2004). Psychopathy and physiological responses to emotionally evocative sounds. Journal of Abnormal Psychology, 113: 99108.Google Scholar
Verschuere, B. & Ben-Shakhar, G. (2011). Theory of the concealed information test. In Verschuere, B., Ben-Shakhar, G., & Meijer, E. H. (eds.), Theory and Application of the Concealed Information Test (pp. 128148). Cambridge University Press.Google Scholar
Verschuere, B., Ben-Shakhar, G., & Meijer, E. H. (eds.). (2011). Memory Detection: Theory and Application of the Concealed Information Test. Cambridge University Press.Google Scholar
Vigouroux, R. (1879). Sur le rôle de la résistance électrique des tissues dans l’electro-diagnostic. Comptes Rendus Société de Biologie, 31: 336339.Google Scholar
Vigouroux, R. (1888). The electrical resistance considered as a clinical sign. Progrès Medicale, 3: 8789.Google Scholar
Vossel, G. & Rossman, R. (1984). Electrodermal habituation speed and visual monitoring performance. Psychophysiology, 21: 97100.Google Scholar
Wallin, B. G. (1981). Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology, 18: 470476.Google Scholar
Wang, G. H. (1964). The Neural Control of Sweating. Madison, WI: University of Wisconsin Press.Google Scholar
Wieselgren, I. M., Öhlund, L. S., Lindstrom, L. H., & Öhman, A. (1994). Electrodermal activity as a predictor of social functioning in female schizophrenics. Journal of Abnormal Psychology, 103: 570573.Google Scholar
Wilhelm, F. H., Pfaltz, M. C., Grossman, P., & Roth, W. T. (2006). Distinguishing emotional from physical activation in ambulatory psychophysiological monitoring. Behavioral Sciences Instrumentation, 42: 458463.Google Scholar
Wilhelm, F. H. & Roth, W. T. (1998). Taking the laboratory to the skies: ambulatory assessment of self-report, autonomic, and respiratory responses in flying phobia. Psychophysiology, 35: 596606.Google Scholar
Woodworth, R. S. & Schlosberg, H. (1954). Experimental Psychology, rev. edn. New York: Holt & Co.Google Scholar
Zahn, T. P., Carpenter, W. T., & McGlashan, T. H. (1981). Autonomic nervous system activity in acute schizophrenia: II. Relationships to short-term prognosis and clinical state. Archives of General Psychiatry, 38: 260266.Google Scholar
Zahn, T. P., Grafman, J., & Tranel, D. (1999). Frontal lobe lesions and electrodermal activity: effects of significance. Neuropsychologia, 37: 12271241.Google Scholar
Zhang, S., Hu, S., Chao, H. H., Luo, X., Farr, O. M., & Li, C. S. (2012). Cerebral correlates of skin conductance responses in a cognitive task. NeuroImage, 62: 14891498.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×