Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-31T13:22:04.243Z Has data issue: false hasContentIssue false

Part II - Fiber access networks

Published online by Cambridge University Press:  05 January 2012

Martin Maier
Affiliation:
Université du Québec, Montréal
Navid Ghazisaidi
Affiliation:
Verizon
Get access

Summary

Fiber access networks have in general one of the following three architectures: (i) point-to-point architecture, (ii) active star architecture, or (iii) passive star architecture. In the point-to-point architecture, each home or building is connected to the central office (CO) via one or two dedicated fibers. This type of architecture provides improved privacy and ease of service upgrade for individual subscribers, but requires a large number of fibers and transceivers since network equipment is not shared among subscribers. As a consequence, footprint and power consumption may become serious problems at the CO. This shortcoming is avoided in star architectures, where a single feeder fiber runs from the CO to a remote node, from which individual distribution fibers branch out to connect the subscribers. The feeder fiber carries all the traffic of the attached subscribers and its cost can be shared among them. In doing so, the number of required fibers and transceivers at the CO can be reduced significantly. Depending on the nature of the remote node, the star architecture may be either active or passive. In the active star architecture, the remote node is an active device, e.g., Ethernet switch, and needs powering and maintenance. Conversely, in the passive star architecture, the active node is replaced with a passive optical splitter/combiner. Using a completely passive splitter/combiner at the remote node avoids the need for powering and maintenance and thereby helps reduce the capital expenditures (CAPEX) and in particular operational expenditures (OPEX) of fiber access networks (Koonen [2006]).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×