Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T16:30:20.339Z Has data issue: false hasContentIssue false

5 - Estimating the received signal strength in complex environments

Published online by Cambridge University Press:  09 August 2009

Christopher Haslett
Affiliation:
Ofcom, UK
Get access

Summary

A radio wave can often travel from a transmitter to a particular point by a number of routes: directly, by diffraction, by reflection, by penetration. At any point, the power received by a receiving antenna will be a combination of all these propagation mechanisms. Because the combined signal is a phasor sum of all the individual contributions an accurate prediction of the electric field strength is very difficult to obtain: it would need knowledge of the distance travelled for each propagation mechanism to within about a tenth of a wavelength plus details of the electrical properties of any materials involved in the paths involving reflection or penetration. Usually, all that is practical is to estimate the strength of the signal that would be achieved by each propagation path in isolation. The total received power is then estimated as the sum of these individual contributions. This gives an estimate of what is called the ‘local-mean’ level. That means that the actual power received would vary about this level by an amount that depends upon the relative strengths and directions of the individual contributions. If the angular separation of the individual contributions, when viewed from the receiver, is small then the signal will not vary very quickly with distance. Further, if one of the contributions is dominant and provides the majority of the signal power on its own then the variation will not be as great as if all the different propagation paths contributed nearly equal amounts of power.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×