Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T13:48:32.939Z Has data issue: false hasContentIssue false

15 - Acute myeloid leukemia and related precursor neoplasms

from Section 2 - Neoplastic hematopathology

Published online by Cambridge University Press:  03 May 2011

Robert B. Lorsbach
Affiliation:
University of Arkansas for Medical Sciences
Maria A. Proytcheva
Affiliation:
Northwestern University Medical School, Illinois
Get access

Summary

Introduction

Acute myeloid leukemia (AML) is a group of clonal malignant disorders of the bone marrow and peripheral blood that morphologically, cytochemically, and immunophenotypically manifest variable degrees of maturation resembling various stages and lineages in normal hematopoietic development. The intense research efforts of the past 30 years have led to major advances in our understanding of the pathogenesis, diagnosis, and treatment of AML. More recently, the completion of the human genome project has fueled the development of methods for the determination of global gene expression and the genome-wide assessment of DNA mutations. These techniques will enhance our knowledge of the underlying genetic lesions responsible for the development of AML, and, importantly for the pathologist, they will undoubtedly revolutionize the classification of AML. Historically, the classification of AML has had relatively little impact on patient care, since most patients with AML were treated with fairly uniform chemotherapeutic regimens and generally had a poor prognosis. However, through the research efforts alluded to above, a classification scheme for AML with clinical utility is starting to emerge. Furthermore, with the advent of chemotherapeutics for AML which specifically target the underlying genetic lesions, the paradigm being all-trans retinoic acid (ATRA) for the treatment of acute promyelocytic leukemia, there is now greater impetus for the precise and meaningful classification of AML.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposals for the classification of the acute leukemias. British Journal of Haematology. 1976;33:451.CrossRefGoogle Scholar
Bennett, JM, Catovsky, D, Daniel, MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Annals of Internal Medicine. 1985;103:460–462.CrossRefGoogle Scholar
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Annals of Internal Medicine. 1985;103:620.CrossRefGoogle ScholarPubMed
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposal for the recognition of minimally differentiated acute myeloid leukemia (AML-MO). British Journal of Haematology. 1991;78:325.CrossRefGoogle Scholar
Raimondi, SC, Chang, MN, Ravindranath, Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood. 1999;94:3707–3716.Google Scholar
Gibson, BE, Wheatley, K, Hann, IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia. 2005;19:2130–2138.CrossRefGoogle ScholarPubMed
Lange, BJ, Smith, FO, Feusner, J, et al. Outcomes in CCG-2961, a Children's Oncology Group phase 3 trial for untreated pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood. 2008;111:1044–1053.CrossRefGoogle ScholarPubMed
Jaffe, ES, Harris, RI, Stein, H, Vardiman, JW. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, et al. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th edn.). Lyon: IARC Press; 2008.Google Scholar
Erickson, P, Gao, J, Chang, KS, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood. 1992;80:1825–1831.Google Scholar
Nisson, PE, Watkins, PC, Sacchi, N. Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genetics and Cytogenetics. 1992;63:81–88. Erratum in Cancer Genetics and Cytogenetics. 1993;66:81.CrossRefGoogle Scholar
Miyoshi, H, Kozu, T, Shimizu, K, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. The EMBO Journal. 1993;12:2715–2721.Google Scholar
Liu, P, Tarle, SA, Hajra, A, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261:1041–1044.CrossRefGoogle Scholar
Rowley, JD. Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Annales de Génétique. 1973;16:109–112.Google Scholar
Osato, M, Asou, N, Abdalla, E, et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood. 1999;93:1817–1824.Google ScholarPubMed
Preudhomme, C, Warot-Loze, D, Roumier, C, et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood. 2000;96:2862–2869.Google Scholar
Mikhail, FM, Serry, KA, Hatem, N, et al. AML1 gene over-expression in childhood acute lymphoblastic leukemia. Leukemia. 2002;16:658–668.CrossRefGoogle ScholarPubMed
Harewood, L, Robinson, H, Harris, R, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia. 2003;17:547–553.CrossRefGoogle ScholarPubMed
Zelent, A, Greaves, M, Enver, T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23:4275–4283.CrossRefGoogle ScholarPubMed
Lorsbach, RB, Downing, JR. The role of the AML1 transcription factor in leukemogenesis. International Journal of Hematology. 2001;74:258–265.CrossRefGoogle ScholarPubMed
Okuda, T, Deursen, J, Hiebert, SW, Grosveld, G, Downing, JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–330.CrossRefGoogle ScholarPubMed
Wang, Q, Stacy, T, Binder, M, et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:3444–3449.CrossRefGoogle ScholarPubMed
Wang, Q, Stacy, T, Miller, JD, et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell. 1996;87:697–708.CrossRefGoogle ScholarPubMed
Sasaki, K, Yagi, H, Bronson, RT, et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:12359–12363.CrossRefGoogle ScholarPubMed
North, T, Gu, TL, Stacy, T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development. 1999;126:2563–2575.Google ScholarPubMed
Lorsbach, RB, Moore, J, Ang, SO, et al. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood. 2004;103:2522–2529.CrossRefGoogle ScholarPubMed
Growney, JD, Shigematsu, H, Li, Z, et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood. 2005;106:494–504.CrossRefGoogle ScholarPubMed
Taniuchi, I, Osato, M, Egawa, T, et al. Differential requirements for runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 2002;111:621–633.CrossRefGoogle ScholarPubMed
Miyoshi, H, Shimizu, K, Kozu, T, et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences of the United States of America. 1991;88:10431–10434.CrossRefGoogle Scholar
Calabi, F, Pannell, R, Pavloska, G. Gene targeting reveals a crucial role for MTG8 in the gut. Molecular and Cellular Biology. 2001;21:5658–5666.CrossRefGoogle Scholar
Wolford, JK, Prochazka, M. Structure and expression of the human MTG8/ETO gene. Gene. 1998;212:103–109.CrossRefGoogle ScholarPubMed
Rochford, JJ, Semple, RK, Laudes, M, et al. ETO/MTG8 is an inhibitor of C/EBPbeta activity and a regulator of early adipogenesis. Molecular and Cellular Biology. 2004;24:9863–9872.CrossRefGoogle Scholar
Frank, R, Zhang, J, Uchida, H, et al. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene. 1995;11:2667–2674.Google ScholarPubMed
Rhoades, KL, Hetherington, CJ, Rowley, JD, et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:11895–11900.CrossRefGoogle Scholar
Westendorf, JJ, Yamamoto, CM, Lenny, N, et al. The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Molecular and Cellular Biology. 1998;18:322–333.CrossRefGoogle Scholar
Lutterbach, B, Sun, D, Schuetz, J, Hiebert, SW. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Molecular and Cellular Biology. 1998;18:3604–3611.CrossRefGoogle Scholar
Lenny, N, Meyers, S, Hiebert, SW. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene. 1995;11:1761–1769.Google Scholar
Wang, J, Hoshino, T, Redner, RL, Kajigaya, S, Liu, JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:10860–10865.CrossRefGoogle Scholar
Rhoades, KL, Hetherington, CJ, Harakawa, N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood. 2000;96:2108–2115.Google ScholarPubMed
Yuan, Y, Zhou, L, Miyamoto, T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:10398–10403.CrossRefGoogle ScholarPubMed
Higuchi, M, O'Brien, D, Kumaravelu, P, et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1:63–74.CrossRefGoogle Scholar
Peterson, LF, Boyapati, A, Ahn, EY, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood. 2007;110:799–805.CrossRefGoogle Scholar
Schessl, C, Rawat, VP, Cusan, M, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. The Journal of Clinical Investigation. 2005;115:2159–2168.CrossRefGoogle ScholarPubMed
Schnittger, S, Kohl, TM, Haferlach, T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107:1791–1799.CrossRefGoogle ScholarPubMed
Frenkel, MA, Tupitsyn, NN, Protasova, AK, et al. Blast cells in child and adult AML: comparative study of morphocytochemical, immunological and cytogenetic characteristics. British Journal of Haematology. 1994;87:708–714.CrossRefGoogle ScholarPubMed
Felice, MS, Zubizarreta, PA, Alfaro, EM, et al. Good outcome of children with acute myeloid leukemia and t(8;21)(q22;q22), even when associated with granulocytic sarcoma: a report from a single institution in Argentina. Cancer. 2000;88:1939–1944.3.0.CO;2-Z>CrossRefGoogle Scholar
Rubnitz, JE, Raimondi, SC, Halbert, AR, et al. Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia. 2002;16:2072–2077.CrossRefGoogle Scholar
Wodzinski, MA, Collin, R, Winfield, DA, Dalton, A, Lawrence, AC. Epidural granulocytic sarcoma in acute myeloid leukemia with 8;21 translocation. Cancer. 1988;62:1299–1300.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Tallman, MS, Hakimian, D, Shaw, JM, et al. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. Journal of Clinical Oncology. 1993;11:690–697.CrossRefGoogle ScholarPubMed
Cox-Froncillo, MC, Genuardi, M, Bajer, J, et al. First report of t(8;21)(q22;q22) in a case of de novo acute monoblastic leukemia. Cancer Genetics and Cytogenetics. 1995;79:82–85.CrossRefGoogle Scholar
Molero, MT, Gomez Casares, MT, Valencia, JM, et al. Detection of a t(8;21)(q22;q22) in a case of M5 acute monoblastic leukemia. Cancer Genetics and Cytogenetics. 1998;100:176–178.CrossRefGoogle Scholar
Berger, R, Bernheim, A, Daniel, MT, et al. Cytologic characterization and significance of normal karyotypes in t(8;21) acute myeloblastic leukemia. Blood. 1982;59:171–178.Google Scholar
Swirsky, DM, Li, YS, Matthews, JG, et al. 8;21 translocation in acute granulocytic leukaemia: cytological, cytochemical and clinical features. British Journal of Haematology. 1984;56:199–213.CrossRefGoogle ScholarPubMed
Haferlach, T, Bennett, JM, Loffler, H, et al. Acute myeloid leukemia with translocation (8;21). Cytomorphology, dysplasia and prognostic factors in 41 cases. AML Cooperative Group and ECOG. Leukemia & Lymphoma. 1996;23:227–234.CrossRefGoogle ScholarPubMed
Nakamura, H, Kuriyama, K, Sadamori, N, et al. Morphological subtyping of acute myeloid leukemia with maturation (AML-M2): homogeneous pink-colored cytoplasm of mature neutrophils is most characteristic of AML-M2 with t(8;21). Leukemia. 1997;11:651–655.CrossRefGoogle Scholar
Horny, HP, Sotlar, K, Valent, P. Mastocytosis: state of the art. Pathobiology. 2007;74:121–132.CrossRefGoogle ScholarPubMed
Pullarkat, VA, Bueso-Ramos, C, Lai, R, et al. Systemic mastocytosis with associated clonal hematological non-mast-cell lineage disease: analysis of clinicopathologic features and activating c-kit mutations. American Journal of Hematology. 2003;73:12–17.CrossRefGoogle ScholarPubMed
Pullarkat, V, Bedell, V, Kim, Y, et al. Neoplastic mast cells in systemic mastocytosis associated with t(8;21) acute myeloid leukemia are derived from the leukemic clone. Leukemia Research. 2007;31:261–265.CrossRefGoogle Scholar
Nagai, S, Ichikawa, M, Takahashi, T, et al. The origin of neoplastic mast cells in systemic mastocytosis with AML1/ETO-positive acute myeloid leukemia. Experimental Hematology. 2007;35:1747–1752.CrossRefGoogle ScholarPubMed
Sperr, WR, Escribano, L, Jordan, JH, et al. Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leukemia Research. 2001;25:529–536.CrossRefGoogle ScholarPubMed
Hurwitz, CA, Raimondi, SC, Head, D, et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood. 1992;80:3182–3188.Google Scholar
Kita, K, Nakase, K, Miwa, H, et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood. 1992;80:470–477.Google Scholar
Baer, MR, Stewart, CC, Lawrence, D, et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood. 1997;90:1643–1648.Google Scholar
Yang, DH, Lee, JJ, Mun, YC, et al. Predictable prognostic factor of CD56 expression in patients with acute myeloid leukemia with t(8:21) after high dose cytarabine or allogeneic hematopoietic stem cell transplantation. American Journal of Hematology. 2007;82:1–5.CrossRefGoogle ScholarPubMed
Baer, R. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Seminars in Cancer Biology. 1993;4:341–347.Google ScholarPubMed
Rege, K, Swansbury, GJ, Atra, AA, et al. Disease features in acute myeloid leukemia with t(8;21)(q22;q22). Influence of age, secondary karyotype abnormalities, CD19 status, and extramedullary leukemia on survival. Leukemia & Lymphoma. 2000;40:67–77.CrossRefGoogle Scholar
Nishii, K, Usui, E, Katayama, N, et al. Characteristics of t(8;21) acute myeloid leukemia (AML) with additional chromosomal abnormality: concomitant trisomy 4 may constitute a distinctive subtype of t(8;21) AML. Leukemia. 2003;17:731–737.CrossRefGoogle Scholar
Downing, JR, Margolis, BL, Zilberstein, A, et al. Phospholipase C-gamma, a substrate for PDGF receptor kinase, is not phosphorylated on tyrosine during the mitogenic response to CSF-1. The EMBO Journal. 1989;8:3345–3350.Google Scholar
Fujimaki, S, Funato, T, Harigae, H, et al. A quantitative reverse transcriptase polymerase chain reaction method for the detection of leukaemic cells with t(8;21) in peripheral blood. European Journal of Haematology. 2000;64:252–258.CrossRefGoogle Scholar
Marcucci, G, Livak, KJ, Bi, W, et al. Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia. 1998;12:1482–1489.CrossRefGoogle ScholarPubMed
Mrozek, K, Prior, TW, Edwards, C, et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B Study. Journal of Clinical Oncology. 2001;19:2482–2492.CrossRefGoogle Scholar
Kusec, R, Laczika, K, Knobl, P, et al. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia. 1994;8:735–739.Google ScholarPubMed
Krauter, J, Gorlich, K, Ottmann, O, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. Journal of Clinical Oncology. 2003;21:4413–4422.CrossRefGoogle ScholarPubMed
Leroy, H, Botton, S, Grardel-Duflos, N, et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia. 2005;19:367–372.CrossRefGoogle Scholar
Yoo, SJ, Chi, HS, Jang, S, et al. Quantification of AML1-ETO fusion transcript as a prognostic indicator in acute myeloid leukemia. Haematologica. 2005;90:1493–1501.Google ScholarPubMed
Stentoft, J, Hokland, P, Ostergaard, M, Hasle, H, Nyvold, CG. Minimal residual core binding factor AMLs by real time quantitative PCR – initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leukemia Research. 2006;30:389–395.CrossRefGoogle Scholar
Raimondi, SC, Kalwinsky, DK, Hayashi, Y, et al. Cytogenetics of childhood acute nonlymphocytic leukemia. Cancer Genetics and Cytogenetics. 1989;40:13–27.CrossRefGoogle ScholarPubMed
Arthur, DC, Bloomfield, CD. Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia, a new association. Blood. 1983;61:994–998.Google Scholar
Beau, MM, Larson, RA, Bitter, MA, et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia: a unique cytogenetic-clinical pathological association. The New England Journal of Medicine. 1983;309:630–636.CrossRefGoogle Scholar
Wang, S, Wang, Q, Crute, BE, et al. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Molecular and Cellular Biology. 1993;13:3324–3339.CrossRefGoogle ScholarPubMed
Ogawa, E, Inuzuka, M, Maruyama, M, et al. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology. 1993;194:314–331.CrossRefGoogle ScholarPubMed
Huang, G, Shigesada, K, Ito, K, et al. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin – proteasome-mediated degradation. The EMBO Journal. 2001;20:723–733.CrossRefGoogle ScholarPubMed
Tanaka, Y, Watanabe, T, Chiba, N, et al. The protooncogene product, PEBP2beta/CBFbeta, is mainly located in the cytoplasm and has an affinity with cytoskeletal structures. Oncogene. 1997;15:677–683.CrossRefGoogle ScholarPubMed
Lu, J, Maruyama, M, Satake, M, et al. Subcellular localization of the alpha and beta subunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF. Molecular and Cellular Biology. 1995;15:1651–1661.CrossRefGoogle ScholarPubMed
Chiba, N, Watanabe, T, Nomura, S, et al. Differentiation dependent expression and distinct subcellular localization of the protooncogene product, PEBP2beta/CBFbeta, in muscle development. Oncogene. 1997;14:2543–2552.CrossRefGoogle ScholarPubMed
Zhu, L, Vranckx, R, Khau Van Kien, P, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nature Genetics. 2006;38:343–349.CrossRefGoogle Scholar
Hajra, A, Liu, PP, Wang, Q, et al. The leukemic core binding factor b-smooth muscle myosin heavy chain (CBFb-SMMHC) chimeric protein requires both CBFb and myosin heavy chain domains for transformation of NIH 3T3 cells. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:1926–1930.CrossRefGoogle Scholar
Shurtleff, SA, Meyers, S, Hiebert, SW, et al. Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood. 1995;85:3695–3703.Google Scholar
Viswanatha, DS, Chen, I, Liu, PP, et al. Characterization and use of an antibody detecting the CBFbeta-SMMHC fusion protein in inv(16)/t(16;16)-associated acute myeloid leukemias. Blood. 1998;91:1882–1890.Google Scholar
Adya, N, Stacy, T, Speck, NA, Liu, PP. The leukemic protein core binding factor b (CBFb)-smooth-muscle myosin heavy chain sequesters CBFa2 into cytoskeletal filaments and aggregates. Molecular and Cellular Biology. 1998;18:7432–7443.CrossRefGoogle Scholar
Kanno, Y, Kanno, T, Sakakura, C, Bae, SC, Ito, Y. Cytoplasmic sequestration of the polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor a (CBFa) subunit by the leukemia-related PEBP2/CBFb-SMMHC fusion protein inhibits PEBP2/CBF-mediated transactivation. Molecular and Cellular Biology. 1998;18:4252–4261.CrossRefGoogle Scholar
Lutterbach, B, Hou, Y, Durst, KL, Hiebert, SW. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:12822–12827.CrossRefGoogle ScholarPubMed
Durst, KL, Lutterbach, B, Kummalue, T, Friedman, AD, Hiebert, SW. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Molecular and Cellular Biology. 2003;23:607–619.CrossRefGoogle Scholar
Lukasik, SM, Zhang, L, Corpora, T, et al. Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis. Nature Structural Biology. 2002;9:674–679.CrossRefGoogle ScholarPubMed
Castilla, LH, Wijmenga, C, Wang, Q, et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell. 1996;87:687–696.CrossRefGoogle ScholarPubMed
Castilla, LH, Garrett, L, Adya, N, et al. The fusion gene cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nature Genetics. 1999;23:144–146.CrossRefGoogle ScholarPubMed
Kundu, M, Liu, PP. Function of the inv(16) fusion gene CBFB-MYH11. Current Opinion in Hematology. 2001;8:201–205.CrossRefGoogle ScholarPubMed
Razzouk, BI, Raimondi, SC, Srivastava, DK, et al. Impact of treatment on the outcome of acute myeloid leukemia with inversion 16: a single institution's experience. Leukemia. 2001;15:1326–1330.CrossRefGoogle ScholarPubMed
Forestier, E, Schmiegelow, K. The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. Journal of Pediatric Hematology/Oncology. 2006;28:486–495.CrossRefGoogle ScholarPubMed
Costello, R, Sainty, D, Lecine, P, et al. Detection of CBFbeta/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia. 1997;11:644–650.CrossRefGoogle ScholarPubMed
Delaunay, J, Vey, N, Leblanc, T, et al. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML Intergroup. Blood. 2003;102:462–469.CrossRefGoogle Scholar
Larson, RA, Williams, SF, Beau, MM, et al. Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood. 1986;68:1242–1249.Google Scholar
Sun, X, Zhang, W, Ramdas, L, et al. Comparative analysis of genes regulated in acute myelomonocytic leukemia with and without inv(16)(p13q22) using microarray techniques, real-time PCR, immunohistochemistry, and flow cytometry immunophenotyping. Modern Pathology. 2007;20:811–820.CrossRefGoogle ScholarPubMed
Adriaansen, HJ, te Boekhorst, PA, Hagemeijer, AM, et al. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood. 1993;81:3043–3051.Google ScholarPubMed
Khalidi, HS, Medeiros, LJ, Chang, KL, et al. The immunophenotype of adult acute myeloid leukemia: high frequency of lymphoid antigen expression and comparison of immunophenotype, French-American-British classification, and karyotypic abnormalities. American Journal of Clinical Pathology. 1998;109:211–220.CrossRefGoogle ScholarPubMed
Rowe, D, Cotterill, SJ, Ross, FM, et al. Cytogenetically cryptic AML1-ETO and CBF beta-MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukaemia. British Journal of Haematology. 2000;111:1051–1056.CrossRefGoogle ScholarPubMed
O'Reilly, J, Chipper, L, Springall, F, Herrmann, R. A unique structural abnormality of chromosome 16 resulting in a CBF beta-MYH11 fusion transcript in a patient with acute myeloid leukemia, FAB M4. Cancer Genetics and Cytogenetics. 2000;121:52–55.CrossRefGoogle Scholar
Li, S, Couzi, RJ, Thomas, GH, Friedman, AD, Borowitz, MJ. A novel variant three-way translocation of inversion 16 in a case of AML-M4eo following low dose methotrexate therapy. Cancer Genetics and Cytogenetics. 2001;125:74–77.CrossRefGoogle Scholar
Merchant, SH, Haines, S, Hall, B, Hozier, J, Viswanatha, DS. Fluorescence in situ hybridization identifies cryptic t(16;16)(p13;q22) masked by del(16)(q22) in a case of AML-M4 Eo. The Journal of Molecular Diagnostics. 2004;6:271–274.CrossRefGoogle Scholar
Guerrasio, A, Pilatrino, C, Micheli, D, et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia. 2002;16:1176–1181.CrossRefGoogle ScholarPubMed
Buonamici, S, Ottaviani, E, Testoni, N, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood. 2002;99:443–449.CrossRefGoogle Scholar
Rowley, JD, Golomb, HM, Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet. 1977;1:549–550.CrossRefGoogle ScholarPubMed
Borrow, J, Goddard, AD, Sheer, D, Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science. 1990;249:1577–1580.CrossRefGoogle ScholarPubMed
Thé, H, Chomienne, C, Lanotte, M, Degos, L, Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990;347:558–561.CrossRefGoogle Scholar
Alcalay, M, Zangrilli, D, Pandolfi, PP, et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proceedings of the National Academy of Sciences of the United States of America. 1991;88:1977–1981.CrossRefGoogle ScholarPubMed
He, LZ, Bhaumik, M, Tribioli, C, et al. Two critical hits for promyelocytic leukemia. Molecular Cell. 2000;6:1131–1141.CrossRefGoogle ScholarPubMed
Collins, SJ. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia. 2002;16:1896–1905.CrossRefGoogle ScholarPubMed
Oren, T, Sher, JA, Evans, T. Hematopoiesis and retinoids: development and disease. Leukemia & Lymphoma 2003;44:1881–1891.CrossRefGoogle ScholarPubMed
Chambon, P. A decade of molecular biology of retinoic acid receptors. The FASEB Journal. 1996;10:940–954.CrossRefGoogle ScholarPubMed
Leid, M, Kastner, P, Lyons, R, et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell. 1992;68:377–395.CrossRefGoogle ScholarPubMed
Horlein, AJ, Naar, AM, Heinzel, T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995;377:397–404.CrossRefGoogle ScholarPubMed
Kurokawa, R, Soderstrom, M, Horlein, A, et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995;377:451–454.CrossRefGoogle ScholarPubMed
Nagy, L, Kao, HY, Chakravarti, D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell. 1997;89:373–380.CrossRefGoogle ScholarPubMed
Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349–352.CrossRefGoogle ScholarPubMed
Kamei, Y, Xu, L, Heinzel, T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996;85:403–414.CrossRefGoogle ScholarPubMed
Shikama, N, Lyon, J, Thangue, N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends in Cell Biology. 1997;7:230–236.CrossRefGoogle Scholar
Kawasaki, H, Eckner, R, Yao, TP, et al. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature. 1998;393:284–289.CrossRefGoogle ScholarPubMed
Ogryzko, VV, Schiltz, RL, Russanova, V, Howard, BH, Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–959.CrossRefGoogle ScholarPubMed
Chen, H, Lin, RJ, Schiltz, RL, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90:569–580.CrossRefGoogle Scholar
Pazin, MJ, Kadonaga, JT. What's up and down with histone deacetylation and transcription?Cell. 1997;89:325–328.CrossRefGoogle Scholar
Rhodes, D. Chromatin structure. The nucleosome core all wrapped up. Nature. 1997;389:231,233.CrossRefGoogle ScholarPubMed
Weis, K, Rambaud, S, Lavau, C, et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell. 1994;76:345–356.CrossRefGoogle ScholarPubMed
Dyck, JA, Maul, GG, Miller, WH, et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell. 1994;76:333–343.CrossRefGoogle ScholarPubMed
Borden, KL, Lally, JM, Martin, SR, et al. In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:1601–1606.CrossRefGoogle ScholarPubMed
Borden, KL, Campbell Dwyer, EJ, Salvato, MS. The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Letters. 1997;418:30–34.CrossRefGoogle Scholar
Le, XF, Yang, P, Chang, KS. Analysis of the growth and transformation suppressor domains of promyelocytic leukemia gene, PML. The Journal of Biological Chemistry. 1996;271:130–135.CrossRefGoogle ScholarPubMed
Wang, ZG, Delva, L, Gaboli, M, et al. Role of PML in cell growth and the retinoic acid pathway. Science. 1998;279:1547–1551.CrossRefGoogle ScholarPubMed
Wang, ZG, Ruggero, D, Ronchetti, S, et al. PML is essential for multiple apoptotic pathways. Nature Genetics. 1998;20:266–272.CrossRefGoogle ScholarPubMed
Yang, S, Kuo, C, Bisi, JE, Kim, MK. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nature Cell Biology. 2002;4:865–870.CrossRefGoogle ScholarPubMed
He, LZ, Guidez, F, Tribioli, C, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nature Genetics. 1998;18:126–135.CrossRefGoogle ScholarPubMed
Grignani, F, Matteis, S, Nervi, C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998;391:815–818.CrossRefGoogle ScholarPubMed
Lin, RJ, Nagy, L, Inoue, S, et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998;391:811–814.CrossRefGoogle ScholarPubMed
Raelson, JV, Nervi, C, Rosenauer, A, et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood. 1996;88:2826–2832.Google ScholarPubMed
Hong, SH, David, G, Wong, CW, Dejean, A, Privalsky, ML. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:9028–9033.CrossRefGoogle ScholarPubMed
Collins, SJ. Acute promyelocytic leukemia: relieving repression induces remission. Blood. 1998;91:2631–2633.Google ScholarPubMed
Tobal, K, Saunders, MJ, Grey, MR, Yin, JA. Persistence of RAR alpha-PML fusion mRNA detected by reverse transcriptase polymerase chain reaction in patients in long-term remission of acute promyelocytic leukaemia. British Journal of Haematology. 1995;90:615–618.CrossRefGoogle ScholarPubMed
Thé, H, Lavau, C, Marchio, A, et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–684.CrossRefGoogle Scholar
Kakizuka, A, Miller, WHJ, Umesono, K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991;66:663–674.CrossRefGoogle Scholar
Guiochon-Mantel, A, Savouret, JF, Quignon, F, et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Molecular Endocrinology (Baltimore, MD). 1995;9:1791–1803.Google ScholarPubMed
Koken, MH, Puvion-Dutilleul, F, Guillemin, MC, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. The EMBO Journal. 1994;13:1073–1083.Google Scholar
Fu, S, Consoli, U, Hanania, EG, et al. PML/RARalpha, a fusion protein in acute promyelocytic leukemia, prevents growth factor withdrawal-induced apoptosis in TF-1 cells. Clinical Cancer Research. 1995;1:583–590.Google ScholarPubMed
Maeda, Y, Horiuchi, F, Miyatake, J, et al. Inhibition of growth and induction of apoptosis by all-trans retinoic acid in lymphoid cell lines transfected with the PML/RAR alpha fusion gene. British Journal of Haematology. 1996;93:973–976.CrossRefGoogle ScholarPubMed
Rogaia, D, Grignani, F, Nicoletti, I, Pelicci, PG. The acute promyelocytic leukemia-specific PML/RAR alpha fusion protein reduces the frequency of commitment to apoptosis upon growth factor deprivation of GM-CSF-dependent myeloid cells. Leukemia. 1995;9:1467–1472.Google ScholarPubMed
Rousselot, P, Hardas, B, Patel, A, et al. The PML-RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene. 1994;9:545–551.Google Scholar
Kogan, SC, Brown, , Shultz, DB, et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. The Journal of Experimental Medicine. 2001;193:531–543.CrossRefGoogle ScholarPubMed
Di Croce, L, Raker, VA, Corsaro, M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295:1079–1082.CrossRefGoogle ScholarPubMed
Nervi, C, Ferrara, FF, Fanelli, M, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein. Blood. 1998;92:2244–2251.Google ScholarPubMed
Zhu, J, Gianni, M, Kopf, E, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:14807–14812.CrossRefGoogle ScholarPubMed
Jing, Y, Xia, L, Lu, M, Waxman, S. The cleavage product deltaPML-RARalpha contributes to all-trans retinoic acid-mediated differentiation in acute promyelocytic leukemia cells. Oncogene 2003;22:4083–4091.CrossRefGoogle ScholarPubMed
Dermime, S, Grignani, F, Clerici, M, et al. Occurrence of resistance to retinoic acid in the acute promyelocytic leukemia cell line NB4 is associated with altered expression of the pml/RAR alpha protein. Blood. 1993;82:1573–1577.Google ScholarPubMed
Shao, W, Benedetti, L, Lamph, WW, Nervi, C, Miller, WHJ. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RAR alpha mutation. Blood. 1997;89:4282–4289.Google ScholarPubMed
Zhou, DC, Kim, SH, Ding, W, et al. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood. 2002;99:1356–1363.CrossRefGoogle ScholarPubMed
Carter, M, Kalwinsky, DK, Dahl, GV, et al. Childhood acute promyelocytic leukemia: a rare variant of nonlymphoid leukemia with distinctive clinical and biologic features. Leukemia. 1989;3:298–302.Google ScholarPubMed
Ortega, JJ, Madero, L, Martin, G, et al. Treatment with all-trans retinoic acid and anthracycline monochemotherapy for children with acute promyelocytic leukemia: a multicenter study by the PETHEMA Group. Journal of Clinical Oncology. 2005;23:7632–7640.CrossRefGoogle ScholarPubMed
Mann, G, Reinhardt, D, Ritter, J, et al. Treatment with all-trans retinoic acid in acute promyelocytic leukemia reduces early deaths in children. Annals of Hematology. 2001;80:417–422.CrossRefGoogle ScholarPubMed
Shimizu, H, Nakadate, H, Taga, T, et al. [Clinical characteristics and treatment results of acute promyelocytic leukemia in children (Children's Cancer and Leukemia Study Group)]. Rinshō Ketsueki. 1993;34:989–996.Google Scholar
Falanga, A, Rickles, FR. Pathogenesis and management of the bleeding diathesis in acute promyelocytic leukaemia. Best Practice & Research. Clinical Haematology. 2003;16:463–482.CrossRefGoogle ScholarPubMed
Kawai, Y, Watanabe, K, Kizaki, M, et al. Rapid improvement of coagulopathy by all-trans retinoic acid in acute promyelocytic leukemia. American Journal of Hematology. 1994;46:184–188.CrossRefGoogle ScholarPubMed
Falanga, A, Iacoviello, L, Evangelista, V, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered all-trans-retinoic acid. Blood. 1995;86:1072–1081.Google ScholarPubMed
Watanabe, R, Murata, M, Takayama, N, et al. Long-term follow-up of hemostatic molecular markers during remission induction therapy with all-trans retinoic acid for acute promyelocytic leukemia. Keio Hematology-Oncology Cooperative Study Group (KHOCS). Thrombosis and Haemostasis. 1997;77:641–645.Google Scholar
Falanga, A, Rickles, FR. Management of thrombohemorrhagic syndromes (THS) in hematologic malignancies. Hematology/the Education Program of the American Society of Hematology. 2007:165–171.Google Scholar
Fenaux, P, Chastang, C, Chevret, S, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1999;94:1192–1200.Google ScholarPubMed
Tallman, MS, Nabhan, C, Feusner, JH, Rowe, JM. Acute promyelocytic leukemia: evolving therapeutic strategies. Blood. 2002;99:759–767.CrossRefGoogle ScholarPubMed
Sanz, MA. Treatment of acute promyelocytic leukemia. Hematology/the Education Program of the American Society of Hematology. 2006:147–155.Google ScholarPubMed
Adès, L, Sanz, MA, Chevret, S, et al. Treatment of newly diagnosed acute promyelocytic leukemia (APL): a comparison of French-Belgian-Swiss and PETHEMA results. Blood. 2008;111:1078–1084.CrossRefGoogle ScholarPubMed
Botton, S, Coiteux, V, Chevret, S, et al. Outcome of childhood acute promyelocytic leukemia with all-trans-retinoic acid and chemotherapy. Journal of Clinical Oncology. 2004;22:1404–1412.CrossRefGoogle ScholarPubMed
Gale, RE, Hills, R, Pizzey, AR, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106:3768–3776.CrossRefGoogle ScholarPubMed
Au, WY, Fung, A, Chim, CS, et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. British Journal of Haematology. 2004;125:463–469.CrossRefGoogle ScholarPubMed
Golomb, HM, Rowley, JD, Vardiman, JW, Testa, JR, Butler, A. “Microgranular” acute promyelocytic leukemia: a distinct clinical, ultrastructural, and cytogenetic entity. Blood. 1980;55:253–259.Google ScholarPubMed
Sainty, D, Liso, V, Cantù-Rajnoldi, A, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood. 2000;96:1287–1296.Google ScholarPubMed
Guglielmi, C, Martelli, MP, Diverio, D, et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. British Journal of Haematology. 1998;102:1035–1041.CrossRefGoogle ScholarPubMed
Foley, R, Soamboonsrup, P, Carter, RF, et al. CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. American Journal of Hematology. 2001;67:34–41.CrossRefGoogle ScholarPubMed
Paietta, E, Goloubeva, O, Neuberg, D, et al. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry. Part B, Clinical Cytometry. 2004;59:1–9.Google ScholarPubMed
Orfao, A, Chillon, MC, Bortoluci, AM, et al. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. Haematologica. 1999;84:405–412.Google ScholarPubMed
Schoch, C, Kohlmann, A, Schnittger, S, et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:10008–10013.CrossRefGoogle ScholarPubMed
Chen, Z, Brand, NJ, Chen, A, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. The EMBO Journal. 1993;12:1161–1167.Google Scholar
Redner, RL, Rush, EA, Faas, S, Rudert, WA, Corey, SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996;87:882–886.Google Scholar
Wells, RA, Catzavelos, C, Kamel-Reid, S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nature Genetics. 1997;17:109–113.CrossRefGoogle ScholarPubMed
Arnould, C, Philippe, C, Bourdon, V, et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Human Molecular Genetics. 1999;8:1741–1749.CrossRefGoogle ScholarPubMed
Redner, RL, Contis, LC, Craig, F, et al. A novel t(3;17)(p25;q21) variant translocation of acute promyelocytic leukemia with rearrangement of the RARA locus. Leukemia. 2006;20:376–379.CrossRefGoogle Scholar
Catalano, A, Dawson, MA, Somana, K, et al. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood. 2007;110:4073–4076.CrossRefGoogle Scholar
Guidez, F, Huang, W, Tong, JH, et al. Poor response to all-trans retinoic acid therapy in a t(11;17) PLZF/RAR alpha patient. Leukemia. 1994;8:312–317.Google Scholar
Licht, JD, Chomienne, C, Goy, A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood. 1995;85:1083–1094.Google Scholar
Koken, MH, Daniel, MT, Gianni, M, et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene. 1999;18:1113–1118.CrossRefGoogle Scholar
Grimwade, D, Biondi, A, Mozziconacci, MJ, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood. 2000;96:1297–1308.Google Scholar
Slack, JL, Arthur, DC, Lawrence, D, et al. Secondary cytogenetic changes in acute promyelocytic leukemia – prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: a Cancer and Leukemia Group B study. Journal of Clinical Oncology. 1997;15:1786–1795.CrossRefGoogle ScholarPubMed
Gallagher, RE, Yeap, BY, Bi, W, et al. Quantitative real-time RT-PCR analysis of PML-RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood. 2003;101:2521–2528.CrossRefGoogle ScholarPubMed
Lee, S, Kim, YJ, Eom, KS, et al. The significance of minimal residual disease kinetics in adults with newly diagnosed PML-RARalpha-positive acute promyelocytic leukemia: results of a prospective trial. Haematologica. 2006;91:671–674.Google ScholarPubMed
Esteve, J, Escoda, L, Martin, G, et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia. 2007;21:446–452.CrossRefGoogle ScholarPubMed
Rozenblatt-Rosen, O, Rozovskaia, T, Burakov, D, et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:4152–4157.CrossRefGoogle ScholarPubMed
Hsieh, JJ, Ernst, P, Erdjument-Bromage, H, Tempst, P, Korsmeyer, SJ. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Molecular and Cellular Biology. 2003;23:186–194.CrossRefGoogle ScholarPubMed
Yokoyama, A, Kitabayashi, I, Ayton, PM, Cleary, ML, Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood. 2002;100:3710–3718.CrossRefGoogle ScholarPubMed
Hsieh, JJ, Cheng, EH, Korsmeyer, SJ. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell. 2003;115:293–303.CrossRefGoogle ScholarPubMed
Ernst, P, Fisher, JK, Avery, W, et al. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Developmental Cell. 2004;6:437–443.CrossRefGoogle ScholarPubMed
Iida, S, Seto, M, Yamamoto, K, et al. MLLT3 gene on 9p22 involved in t(9;11) leukemia encodes a serine/proline rich protein homologous to MLLT1 on 19p13. Oncogene. 1993;8:3085–3092.Google Scholar
Collins, EC, Appert, A, Ariza-McNaughton, L, et al. Mouse Af9 is a controller of embryo patterning, like Mll, whose human homologue fuses with Af9 after chromosomal translocation in leukemia. Molecular and Cellular Biology. 2002;22:7313–7324.CrossRefGoogle ScholarPubMed
Meyer, C, Schneider, B, Jakob, S, et al. The MLL recombinome of acute leukemias. Leukemia. 2006;20:777–784.CrossRefGoogle ScholarPubMed
Downing, JR, Look, AT. MLL fusion genes in the 11q23 acute leukemias. Cancer Treatment and Research. 1996;84:73–92.CrossRefGoogle ScholarPubMed
Waring, PM, Cleary, ML. Disruption of a homolog of trithorax by 11q23 translocations: leukemogenic and transcriptional implications. Current Topics in Microbiology and Immunology. 1997;220:1–23.Google ScholarPubMed
Rubnitz, JE, Behm, FG, Downing, JR. 11q23 rearrangements in acute leukemia. Leukemia. 1996;10:74–82.Google ScholarPubMed
Schichman, SA, Caligiuri, MA, Strout, MP, et al. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Research. 1994;54:4277–4280.Google ScholarPubMed
Lavau, C, Szilvassy, SJ, Slany, R, Cleary, ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. The EMBO Journal. 1997;16:4226–4237.CrossRefGoogle ScholarPubMed
Slany, RK, Lavau, C, Cleary, ML. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Molecular and Cellular Biology. 1998;18:122–129.CrossRefGoogle ScholarPubMed
Dobson, CL, Warren, AJ, Pannell, R, Forster, A, Rabbitts, TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. The EMBO Journal. 2000;19:843–851.CrossRefGoogle ScholarPubMed
So, CW, Lin, M, Ayton, PM, Chen, EH, Cleary, ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 2003;4:99–110.CrossRefGoogle ScholarPubMed
Martin, ME, Milne, TA, Bloyer, S, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell. 2003;4:197–207.CrossRefGoogle ScholarPubMed
Eguchi, M, Eguchi-Ishimae, M, Greaves, M. The small oligomerization domain of gephyrin converts MLL to an oncogene. Blood. 2004;103:3876–3882.CrossRefGoogle Scholar
So, CW, Cleary, ML. Dimerization: a versatile switch for oncogenesis. Blood. 2004;104:919–922.CrossRefGoogle ScholarPubMed
Hess, JL. MLL: a histone methyltransferase disrupted in leukemia. Trends in Molecular Medicine. 2004;10:500–507.CrossRefGoogle ScholarPubMed
Hess, JL. Mechanisms of transformation by MLL. Critical Reviews in Eukaryotic Gene Expression. 2004;14:235–254.CrossRefGoogle ScholarPubMed
Li, ZY, Liu, DP, Liang, CC. New insight into the molecular mechanisms of MLL-associated leukemia. Leukemia. 2005;19:183–190.CrossRefGoogle ScholarPubMed
Hsu, K, Look, AT. Turning on a dimer: new insights into MLL chimeras. Cancer Cell. 2003;4:81–83.CrossRefGoogle ScholarPubMed
Yamamoto, K, Hamaguchi, H, Nagata, K, Kobayashi, M, Taniwaki, M. Tandem duplication of the MLL gene in myelodysplastic syndrome – derived overt leukemia with trisomy 11. American Journal of Hematology. 1997;55:41–45.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Kwong, YL. Partial duplication of the MLL gene in acute myelogenous leukemia without karyotypic aberration. Cancer Genetics and Cytogenetics. 1997;97:20–24.CrossRefGoogle ScholarPubMed
Yu, M, Honoki, K, Andersen, J, et al. MLL tandem duplication and multiple splicing in adult acute myeloid leukemia with normal karyotype. Leukemia. 1996;10:774–780.Google ScholarPubMed
Corral, J, Lavenir, I, Impey, H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell. 1996;85:853–861.CrossRefGoogle ScholarPubMed
So, CW, Karsunky, H, Passegue, E, et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell. 2003;3:161–171.CrossRefGoogle ScholarPubMed
Zeisig, BB, Garcia-Cuellar, MP, Winkler, TH, Slany, RK. The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene. 2003;22:1629–1637.CrossRefGoogle ScholarPubMed
Armstrong, SA, Staunton, JE, Silverman, LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics. 2002;30:41–47.CrossRefGoogle ScholarPubMed
Ross, ME, Zhou, X, Song, G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102:2951–2959.CrossRefGoogle ScholarPubMed
Park, IK, He, Y, Lin, F, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood. 2002;99:488–498.CrossRefGoogle ScholarPubMed
Pineault, N, Helgason, CD, Lawrence, HJ, Humphries, RK. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Experimental Hematology. 2002;30:49–57.CrossRefGoogle ScholarPubMed
Akashi, K, He, X, Chen, J, et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood. 2003;101:383–389.CrossRefGoogle ScholarPubMed
So, CW, Karsunky, H, Wong, P, Weissman, IL, Cleary, ML. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 2004;103:3192–3199.CrossRefGoogle ScholarPubMed
Ayton, PM, Cleary, ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes & Development. 2003;17:2298–2307.CrossRefGoogle ScholarPubMed
Zeisig, BB, Milne, T, Garcia-Cuellar, MP, et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Molecular and Cellular Biology. 2004;24:617–628.CrossRefGoogle ScholarPubMed
Kumar, AR, Hudson, WA, Chen, W, et al. Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood. 2004;103:1823–1828.CrossRefGoogle Scholar
Rubnitz, JE, Raimondi, SC, Tong, X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. Journal of Clinical Oncology. 2002;20:2302–2309.CrossRefGoogle Scholar
Forestier, E, Heim, S, Blennow, E, et al. Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. British Journal of Haematology. 2003;121:566–577.CrossRefGoogle ScholarPubMed
Raimondi, SC, Peiper, SC, Kitchingman, GR, et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood. 1989;73:1627–1634.Google ScholarPubMed
Pui, CH, Behm, FG, Raimondi, SC, et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. The New England Journal of Medicine. 1989;321:136–142.CrossRefGoogle ScholarPubMed
Pui, CH, Ribeiro, RC, Hancock, ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. The New England Journal of Medicine. 1991;325:1682–1687.CrossRefGoogle ScholarPubMed
Pui, CH, Frankel, LS, Carroll, AJ, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood. 1991;77:440–447.Google Scholar
Kaneko, Y, Maseki, N, Takasaki, N, et al. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood. 1986;67:484–491.Google ScholarPubMed
Koller, U, Haas, OA, Ludwig, WD, et al. Phenotypic and genotypic heterogeneity in infant acute leukemia. II. Acute nonlymphoblastic leukemia. Leukemia. 1989;3:708–714.Google ScholarPubMed
Sorensen, PH, Chen, CS, Smith, FO, et al. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. The Journal of Clinical Investigation. 1994;93:429–437.CrossRefGoogle ScholarPubMed
Martinez-Climent, JA, Thirman, MJ, Espinosa, R, Beau, MM, Rowley, JD. Detection of 11q23/MLL rearrangements in infant leukemias with fluorescence in situ hybridization and molecular analysis. Leukemia. 1995;9:1299–1304.Google ScholarPubMed
Baer, MR, Stewart, CC, Lawrence, D, et al. Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry. Leukemia. 1998;12:317–325.CrossRefGoogle ScholarPubMed
Cox, MC, Panetta, P, Lo-Coco, F, et al. Chromosomal aberration of the 11q23 locus in acute leukemia and frequency of MLL gene translocation: results in 378 adult patients. American Journal of Clinical Pathology. 2004;122:298–306.CrossRefGoogle ScholarPubMed
Munoz, L, Nomdedeu, JF, Villamor, N, et al. Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia. 2003;17:76–82.CrossRefGoogle ScholarPubMed
Martinez-Climent, JA, Lane, NJ, Rubin, CM, et al. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia. 1995;9:95–101.Google ScholarPubMed
Mrozek, K, Heinonen, K, Lawrence, D, et al. Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a cancer and leukemia group B study. Blood. 1997;90:4532–4538.Google Scholar
Watanabe, N, Kobayashi, H, Ichiji, O, et al. Cryptic insertion and translocation or nondividing leukemic cells disclosed by FISH analysis in infant acute leukemia with discrepant molecular and cytogenetic findings. Leukemia. 2003;17:876–882.CrossRefGoogle ScholarPubMed
Pallisgaard, N, Hokland, P, Riishoj, DC, Pedersen, B, Jorgensen, P. Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood. 1998;92:574–588.Google ScholarPubMed
Strehl, S, Konig, M, Mann, G, Haas, OA. Multiplex reverse transcriptase-polymerase chain reaction screening in childhood acute myeloblastic leukemia. Blood. 2001;97:805–808.CrossRefGoogle ScholarPubMed
Andersson, A, Hoglund, M, Johansson, B, et al. Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT – PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia. 2001;15:1293–1300.CrossRefGoogle ScholarPubMed
Jansen, MW, Velden, VH, Dongen, JJ. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia. 2005;19:2016–2018.CrossRefGoogle ScholarPubMed
Olesen, LH, Clausen, N, Dimitrijevic, A, et al. Prospective application of a multiplex reverse transcription-polymerase chain reaction assay for the detection of balanced translocations in leukaemia: a single-laboratory study of 390 paediatric and adult patients. British Journal of Haematology. 2004;127:59–66.CrossRefGoogle ScholarPubMed
Cuthbert, G, Thompson, K, Breese, G, McCullough, S, Bown, N. Sensitivity of FISH in detection of MLL translocations. Genes, Chromosomes & Cancer. 2000;29:180–185.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Arnaud, B, Douet-Guilbert, N, Morel, F, et al. Screening by fluorescence in situ hybridization for MLL status at diagnosis in 239 unselected patients with acute myeloblastic leukemia. Cancer Genetics and Cytogenetics. 2005;161:110–115.CrossRefGoogle ScholarPubMed
Maroc, N, Morel, A, Beillard, E, et al. A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia. Leukemia. 2004;18:1522–1530.CrossRefGoogle ScholarPubMed
Harrison, CJ, Griffiths, M, Moorman, F, et al. A multicenter evaluation of comprehensive analysis of MLL translocations and fusion gene partners in acute leukemia using the MLL FusionChip device. Cancer Genetics and Cytogenetics. 2007;173:17–22.CrossRefGoogle ScholarPubMed
Athale, UH, Razzouk, BI, Raimondi, SC, et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood. 2001;97:3727–3732.CrossRefGoogle ScholarPubMed
Lange, B. The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. British Journal of Haematology. 2000;110:512–524.CrossRefGoogle ScholarPubMed
Zipursky, A, Poon, A, Doyle, J. Leukemia in Down syndrome: a review. Pediatric Hematology and Oncology. 1992;9:139–149.CrossRefGoogle ScholarPubMed
Zipursky, A. Transient leukaemia – a benign form of leukaemia in newborn infants with trisomy 21. British Journal of Haematology. 2003;120:930–938.CrossRefGoogle ScholarPubMed
Shivdasani, RA. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells. 2001;19:397–407.CrossRefGoogle ScholarPubMed
Nichols, KE, Crispino, JD, Poncz, M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genetics. 2000;24:266–270.CrossRefGoogle Scholar
Freson, K, Devriendt, K, Matthijs, G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001;98:85–92.CrossRefGoogle ScholarPubMed
Mehaffey, MG, Newton, AL, Gandhi, MJ, Crossley, M, Drachman, JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood. 2001;98:2681–2688.CrossRefGoogle ScholarPubMed
Shivdasani, RA, Fujiwara, Y, McDevitt, MA, Orkin, SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. The EMBO Journal. 1997;16:3965–3973.CrossRefGoogle ScholarPubMed
Groet, J, McElwaine, S, Spinelli, M, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet. 2003;361:1617–1620.CrossRefGoogle ScholarPubMed
Hitzler, JK, Cheung, J, Li, Y, Scherer, SW, Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood. 2003;101:4301–4304.CrossRefGoogle ScholarPubMed
Rainis, L, Bercovich, D, Strehl, S, et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood. 2003;102:981–986.CrossRefGoogle ScholarPubMed
Wechsler, J, Greene, M, McDevitt, MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nature Genetics. 2002;32:148–152.CrossRefGoogle ScholarPubMed
Xu, G, Nagano, M, Kanezaki, R, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood. 2003;102:2960–2968.CrossRefGoogle ScholarPubMed
Ahmed, M, Sternberg, A, Hall, G, et al. Natural history of GATA1 mutations in Down syndrome. Blood. 2004;103:2480–2489.CrossRefGoogle ScholarPubMed
Groet, J, McElwaine, S, Spinelli, M, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet. 2003;361:1617–1620.CrossRefGoogle ScholarPubMed
Hitzler, JK, Cheung, J, Li, Y, Scherer, SW, Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood. 2003;101:4301–4304.CrossRefGoogle ScholarPubMed
Rainis, L, Bercovich, D, Strehl, S, et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood. 2003;102:981–986.CrossRefGoogle ScholarPubMed
Wechsler, J, Greene, M, McDevitt, MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nature Genetics. 2002;32:148–152.CrossRefGoogle ScholarPubMed
Harigae, H, Xu, G, Sugawara, T, et al. The GATA1 mutation in an adult patient with acute megakaryoblastic leukemia not accompanying Down syndrome. Blood. 2004;103:3242–3243.CrossRefGoogle Scholar
Mundschau, G, Gurbuxani, S, Gamis, AS, et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood. 2003;101:4298–4300.CrossRefGoogle ScholarPubMed
Xu, G, Nagano, M, Kanezaki, R, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down's syndrome. Blood. 2003;102:2960–2968.CrossRefGoogle Scholar
Li, Z, Godinho, FJ, Klusmann, JH, et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nature Genetics. 2005;37:613–619.CrossRefGoogle ScholarPubMed
Carroll, A, Civin, C, Schneider, N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood. 1991;78:748–752.Google Scholar
Bernstein, J, Dastugue, N, Haas, OA, et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia. 2000;14:216–218.CrossRefGoogle Scholar
Mercher, T, Coniat, MB, Monni, R, et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:5776–5779.CrossRefGoogle Scholar
Ma, Z, Morris, SW, Valentine, V, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nature Genetics. 2001;28:220–221.CrossRefGoogle Scholar
Selvaraj, A, Prywes, R. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation. The Journal of Biological Chemistry. 2003;278:41977–41987.CrossRefGoogle ScholarPubMed
Parmacek, MS. Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circulation Research. 2007;100:633–644.CrossRefGoogle ScholarPubMed
Sasazuki, T, Sawada, T, Sakon, S, et al. Identification of a novel transcriptional activator, BSAC, by a functional cloning to inhibit tumor necrosis factor-induced cell death. The Journal of Biological Chemistry. 2002;277:28853–28860.CrossRefGoogle ScholarPubMed
Li, S, Chang, S, Qi, X, Richardson, JA, Olson, EN. Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Molecular and Cellular Biology. 2006;26:5797–5808.CrossRefGoogle ScholarPubMed
Sun, Y, Boyd, K, Xu, W, et al. Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Molecular and Cellular Biology. 2006;26:5809–5826.CrossRefGoogle ScholarPubMed
Raffel, GD, Mercher, T, Shigematsu, H, et al. Ott1(Rbm15) has pleiotropic roles in hematopoietic development. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:6001–6006.CrossRefGoogle ScholarPubMed
Cairney, AE, McKenna, R, Arthur, DC, Nesbit, ME Jr., Woods, WG. Acute megakaryoblastic leukaemia in children. British Journal of Haematology. 1986;63:541–554.Google ScholarPubMed
Ribeiro, RC, Oliveira, MS, Fairclough, D, et al. Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases. Leukemia & Lymphoma. 1993;10:299–306.CrossRefGoogle ScholarPubMed
Henry, E, Walker, D, Wiedmeier, SE, Christensen, RD. Hematological abnormalities during the first week of life among neonates with Down syndrome: data from a multihospital healthcare system. American Journal of Medical Genetics. Part A. 2007;143:42–50.CrossRefGoogle Scholar
Hayashi, Y, Eguchi, M, Sugita, K, et al. Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down's syndrome. Blood. 1988;72:15–23.Google ScholarPubMed
Penchansky, L, Taylor, SR, Krause, JR. Three infants with acute megakaryoblastic leukemia simulating metastatic tumor. Cancer. 1989;64:1366–1371.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Pui, CH, Rivera, G, Mirro, J, et al. Acute megakaryoblastic leukemia. Blast cell aggregates simulating metastatic tumor. Archives of Pathology & Laboratory Medicine. 1985;109:1033–1035.Google ScholarPubMed
Deutsch, VR, Tomer, A. Megakaryocyte development and platelet production. British Journal of Haematology. 2006;134:453–466.CrossRefGoogle ScholarPubMed
Al-Kasim, F, Doyle, JJ, Massey, GV, Weinstein, HJ, Zipursky, A. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. Journal of Pediatric Hematology/Oncology. 2002;24:9–13.CrossRefGoogle ScholarPubMed
Becroft, DM, Zwi, LJ. Perinatal visceral fibrosis accompanying the megakaryoblastic leukemoid reaction of Down syndrome. Paediatric Pathology. 1990;10:397–406.CrossRefGoogle ScholarPubMed
Ruchelli, ED, Uri, A, Dimmick, JE, et al. Severe perinatal liver disease and Down syndrome: an apparent relationship. Human Pathology. 1991;22:1274–1280.CrossRefGoogle Scholar
Miyauchi, J, Ito, Y, Kawano, T, Tsunematsu, Y, Shimizu, K. Unusual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down's syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood. 1992;80:1521–1527.Google ScholarPubMed
Tomer, A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood. 2004;104:2722–2727.CrossRefGoogle ScholarPubMed
Carroll, AJ, Crist, WM, Link, MP, et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1990;76:1220–1224.Google Scholar
Massey, GV, Zipursky, A, Chang, MN, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood. 2006;107:4606–4613.CrossRefGoogle ScholarPubMed
Betz, SA, Foucar, K, Head, DR, Chen, IM, Willman, CL. False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts. Blood. 1992;79:2399–2403.Google ScholarPubMed
Dercksen, MW, Weimar, IS, Richel, DJ, et al. The value of flow cytometric analysis of platelet glycoprotein expression of CD34+ cells measured under conditions that prevent P-selectin-mediated binding of platelets. Blood. 1995;86:3771–3782.Google ScholarPubMed
Litz, CE, Davies, S, Brunning, RD, et al. Acute leukemia and the transient myeloproliferative disorder associated with Down syndrome: morphologic, immunophenotypic and cytogenetic manifestations. Leukemia. 1995;9:1432–1439.Google ScholarPubMed
Roche-Lestienne, C, Dastugue, N, Richebourg, S, et al. Acute megakaryoblastic leukemia with der(7)t(5;7)(q11;p11–p12) associated with Down syndrome: a fourth case report. Cancer Genetics and Cytogenetics. 2006;169:184–186.CrossRefGoogle Scholar
Kobayashi, K, Usami, I, Kubota, M, Nishio, T, Kakazu, N. Chromosome 7 abnormalities in acute megakaryoblastic leukemia associated with Down syndrome. Cancer Genetics and Cytogenetics. 2005;158:184–187.CrossRefGoogle ScholarPubMed
Ma, SK, Lee, AC, Wan, TS, Lam, CK, Chan, LC. Trisomy 8 as a secondary genetic change in acute megakaryoblastic leukemia associated with Down's syndrome. Leukemia. 1999;13:491–492.CrossRefGoogle ScholarPubMed
Honda, F, Punnett, HH, Charney, E, Miller, G, Thiede, HA. Serial cytogenetic and hematologic studies on a mongol with trisomy-21 and acute congenital leukemia. The Journal of Pediatrics. 1964;65:880–887.CrossRefGoogle ScholarPubMed
Lazarus, KH, Heerema, NA, Palmer, CG, Baehner, RL. The myeloproliferative reaction in a child with Down syndrome: cytological and chromosomal evidence for a transient leukemia. American Journal of Hematology. 1981;11:417–423.CrossRefGoogle Scholar
Rogers, PC, Kalousek, DK, Denegri, JF, Thomas, JW, Baker, MA. Neonate with Down's syndrome and transient congenital leukemia. In vitro studies. The American Journal of Pediatric Hematology/Oncology. 1983;5:59–64.Google ScholarPubMed
Coulombel, L, Derycke, M, Villeval, JL, et al. Characterization of the blast cell population in two neonates with Down's syndrome and transient myeloproliferative disorder. British Journal of Haematology. 1987;66:69–76.CrossRefGoogle ScholarPubMed
Adams, RH, Lemons, RS, Thangavelu, M, Beau, MM, Christensen, RD. Interstitial deletion of chromosome 5, del(5q), in a newborn with Down syndrome and an unusual hematologic disorder. American Journal of Hematology. 1989;31:273–279.CrossRefGoogle Scholar
Ghosh, K. Transient abnormal myelopoiesis in Down's syndrome – are some of them truly leukaemic?Leukemia Research. 1992;16:545–546.CrossRefGoogle ScholarPubMed
Zipursky, A, Doyle, J. Leukemia in newborn infants with Down syndrome. Leukemia Research. 1993;17:195.CrossRefGoogle ScholarPubMed
Kounami, S, Aoyagi, N, Tsuno, H, et al. Additional chromosome abnormalities in transient abnormal myelopoiesis in Down's syndrome patients. Acta Haematologica. 1997;98:109–112.CrossRefGoogle ScholarPubMed
Shen, JJ, Williams, BJ, Zipursky, A, et al. Cytogenetic and molecular studies of Down syndrome individuals with leukemia. American Journal of Human Genetics. 1995;56:915–925.Google ScholarPubMed
,Groupe Français de Cytogénétique Hématologique. Cytogenetic findings in leukemic cells of 56 patients with constitutional chromosome abnormalities. A cooperative study. Cancer Genetics and Cytogenetics. 1988;35:243–252.CrossRefGoogle Scholar
Pine, SR, Guo, Q, Yin, C, et al. GATA1 as a new target to detect minimal residual disease in both transient leukemia and megakaryoblastic leukemia of Down syndrome. Leukemia Research. 2005;29:1353–1356.CrossRefGoogle ScholarPubMed
Ballerini, P, Blaise, A, Mercher, T, et al. A novel real-time RT-PCR assay for quantification of OTT-MAL fusion transcript reliable for diagnosis of t(1;22) and minimal residual disease (MRD) detection. Leukemia. 2003;17:1193–1196.CrossRefGoogle Scholar
Dastugue, N, Lafage-Pochitaloff, M, Pages, MP, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2002;100:618–626.CrossRefGoogle Scholar
Duchayne, E, Fenneteau, O, Pages, MP, et al. Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Français d'Hématologie Cellulaire (GFHC). Leukemia & Lymphoma. 2003;44:49–58.CrossRefGoogle Scholar
Trejo, RM, Aguilera, RP, Nieto, S, Kofman, S. A t(1;22)(p13;q13) in four children with acute megakaryoblastic leukemia (M7), two with Down syndrome. Cancer Genetics and Cytogenetics. 2000;120:160–162.CrossRefGoogle Scholar
Falini, B, Mecucci, C, Tiacci, E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. The New England Journal of Medicine. 2005;352:254–266.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Falini, B, Nicoletti, I, Martelli, MF, Mecucci, C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007;109:874–885.CrossRefGoogle ScholarPubMed
Thiede, C, Koch, S, Creutzig, E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107:4011–4020.CrossRefGoogle Scholar
Brown, P, McIntyre, E, Rau, R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110:979–985.CrossRefGoogle ScholarPubMed
Cazzaniga, G, Dell'Oro, MG, Mecucci, C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood. 2005;106:1419–1422.CrossRefGoogle ScholarPubMed
Schnittger, S, Schoch, C, Kern, W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–3739.CrossRefGoogle ScholarPubMed
Mullighan, CG, Kennedy, A, Zhou, X, et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia. 2007;21:2000–2009.CrossRefGoogle ScholarPubMed
Chen, W, Rassidakis, GZ, Li, J, et al. High frequency of NPM1 gene mutations in acute myeloid leukemia with prominent nuclear invaginations (“cuplike” nuclei). Blood. 2006;108:1783–1784.CrossRefGoogle Scholar
Mori, Y, Yoshimoto, G, Kumano, T, et al. Distinctive expression of myelomonocytic markers and down-regulation of CD34 in acute myelogenous leukaemia with FLT3 tandem duplication and nucleophosmin mutation. European Journal of Haematology. 2007;79:17–24.CrossRefGoogle ScholarPubMed
Chou, WC, Tang, JL, Wu, SJ, et al. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia. 2007;21:998–1004.CrossRefGoogle ScholarPubMed
Gorello, P, Cazzaniga, G, Alberti, F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20:1103–1108.CrossRefGoogle ScholarPubMed
Bisschop, MM, Revesz, T, Bierings, M, et al. Extramedullary infiltrates at diagnosis have no prognostic significance in children with acute myeloid leukaemia. Leukemia. 2001;15:46–49.CrossRefGoogle ScholarPubMed
Kobayashi, R, Tawa, A, Hanada, R, et al. Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. Pediatric Blood & Cancer. 2007;48:393–398.CrossRefGoogle ScholarPubMed
Schwyzer, R, Sherman, GG, Cohn, RJ, Poole, JE, Willem, P. Granulocytic sarcoma in children with acute myeloblastic leukemia and t(8;21). Medical and Pediatric Oncology. 1998;31:144–149.3.0.CO;2-B>CrossRefGoogle Scholar
Menasce, LP, Banerjee, SS, Beckett, E, Harris, M. Extra-medullary myeloid tumour (granulocytic sarcoma) is often misdiagnosed: a study of 26 cases. Histopathology. 1999;34:391–398.CrossRefGoogle ScholarPubMed
Pileri, SA, Ascani, S, Cox, MC, et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21:340–350.CrossRefGoogle ScholarPubMed
Quintanilla-Martinez, L, Zukerberg, LR, Ferry, JA, Harris, NL. Extramedullary tumors of lymphoid or myeloid blasts. The role of immunohistology in diagnosis and classification. American Journal of Clinical Pathology. 1995;104:431–443.CrossRefGoogle ScholarPubMed
Tiacci, E, Pileri, S, Orleth, A, et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Research. 2004;64:7399–7404.CrossRefGoogle Scholar
Valbuena, JR, Medeiros, LJ, Rassidakis, GZ, et al. Expression of B cell-specific activator protein/PAX5 in acute myeloid leukemia with t(8;21)(q22;q22). American Journal of Clinical Pathology. 2006;126:235–240.CrossRefGoogle Scholar
Gibson, SE, Dong, HY, Advani, AS, Hsi, ED. Expression of the B cell-associated transcription factors PAX5, Oct-2, and BOB.1 in acute myeloid leukemia: associations with B-cell antigen expression and myelomonocytic maturation. American Journal of Clinical Pathology. 2006;126:916–924.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×