Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T09:21:26.527Z Has data issue: false hasContentIssue false

5 - Preventative and therapeutic strategies for cancer stem cells

from SECTION II - THERAPEUTIC IMPLICATIONS OF CANCER STEM CELLS

Published online by Cambridge University Press:  15 December 2009

Stewart Sell
Affiliation:
Wadsworth Center, Ordway Research Institute, and the University at Albany
Gennadi Glinsky
Affiliation:
Ordway Research Institute
Get access

Summary

Treatment of cancer should be directed to cancer stem cells as well as to the stage of maturation arrest at which the cancer cells accumulate. Cancers contain the same cell populations as do normal adult tissues: stem cells, proliferating transit-amplifying cells, terminally differentiated (mature cells), and dead cells. During normal tissue renewal, the number of proliferating transit-amplifying cells is essentially the same as the number of terminally differentiating cells so that the total number of cells remains relatively constant. On the other hand, in cancer tissue, the transit-amplifying cells are arrested at a stage of maturation in which they continue to proliferate and accumulate so that the mass of cancerous tissue continues to increase. The ability of retinoic acids to induce differentiation of teratocarcinoma stem cells provided a proof of principle that cancer stem cells could be induced to differentiate (differentiation therapy). Differentiation therapy has been applied with great success to cancer of the blood cells (leukemias) by inactivation of the signaling pathways that allow the leukemic transit-amplifying cells to continue to proliferate and not die (maturation arrest). Conventional therapies, such as chemotherapy, radiotherapy, and antiangiogenic therapies, also act on the proliferating cancer transit-amplifying cells. When these therapies are discontinued, the cancer will reform from the therapy-resistant cancer stem cells. Cancer stem cell–directed therapy may be possible using small inhibitory molecules or inhibitory RNAs (iRNA) to block the signals that maintain stemness so that the cancer stem cells are allowed to differentiate.

Type
Chapter
Information
Cancer Stem Cells , pp. 68 - 92
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pierce, GB, Wallace, C.Differentiation of malignant to benign cells. Cancer Res 1971;31:127–134. AN AACR SCIENTIFIC LANDMARKGoogle ScholarPubMed
Sell, S, Pierce, GB. Biology of disease: maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 1994;70:6–21. AN AACR SCIENTIFIC LANDMARKGoogle Scholar
Reya, T, Morrison, SJ, Clarke, MF, Weissman, IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–111.CrossRefGoogle ScholarPubMed
Sell, S.Stem cell origin of cancer and differentiation therapy. CR Oncol/Hematol 2004;51:1–28.CrossRefGoogle ScholarPubMed
Sell, S.Potential gene therapy for cancer stem cells. Curr Gene Ther 2006;6:579–591.CrossRefGoogle ScholarPubMed
Sell, S.Leukemia: stem cells, maturation arrest and differentiation therapy. Stem Cell Rev 2005;1:197–205.CrossRefGoogle ScholarPubMed
O'Hare, MJ. Teratomas, neoplasia and differentiation: a biological overview I. The natural history of teratomas. Invest Cell Pathol 1978;1:39–63.Google ScholarPubMed
Pierce, GB, Shikes, R, Fink, LM. Cancer: a problem of developmental biology. Englewood Cliffs, NJ; Prentice Hall, 1978.Google Scholar
Peyron, A. Sur la presence des cellules genitales primordiales dans les boutons embryonnaires des embryomes parthenogenetiques chez l'homme. CR Acad Sci (Paris) 1938;206:1680–1683.Google Scholar
Pierce, GB, Dixon, FJ. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 1959;12:573–583.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Pierce, GB, Dixon, FJ, Varney, IL. Teratocarcinogenic and tissue forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest 1960;9:583–602.Google ScholarPubMed
Kleinsmith, LJ, Pierce, GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res 1964;24:1544–1551.Google ScholarPubMed
Pierce, GB, Varney, EL. An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer 1961;14:1017–1029.3.0.CO;2-P>CrossRefGoogle Scholar
O'Hare, MJ. Teratomas, neoplasia and differentiation: a biological overview. I. The natural history of teratomas. Invest Cell Pathol 1978;1:39–63.Google ScholarPubMed
Spira, AI, Carducci, MA. Differentiation therapy. Curr Opin Pharmacol 2003;3:338–343.CrossRefGoogle ScholarPubMed
Strickland, S, Madavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 1978;15:393–403.CrossRefGoogle ScholarPubMed
Grover, A, Adamson, ED. Evidence for the existence of an early common biochemical pathway in the differentiation of F9 cells into visceral or parietal endoderm: modulation by cyclic AMP. Dev Biol 1986;114:492–503.CrossRefGoogle ScholarPubMed
Wasylyk, B, Imler, JL, Chatton, B, Schatz, C, Wasylyk, C. Negative and positive factors determine the activity of the polyoma virus enhancer alpha domain in undifferentiated and differentiated cell types. Proc Natl Acad Sci USA 1988;85:7952–7956.CrossRefGoogle ScholarPubMed
Oshima, RG, Abrams, L, Kulesh, D. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev 1990;4:835–848.CrossRefGoogle ScholarPubMed
Boylan, JF, Lufkin, T, Achkar, CC, Taneja, R, Chambon, P, Gudas, LJ. Targeted disruption of retinoic acid receptor α (RARα) and RARγ results in receptor-mediated alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol Cell Biol 1995;15:843–851.CrossRefGoogle Scholar
Choi, SK, Yeh, J-C, Cho, M, Cummings, RD. Transcriptions regulation of 1,3-galactosyltransferase in embryonal carcinoma cells by retinoic acid. J Biol Chem 1996;271:3238–3246.CrossRefGoogle Scholar
Congyi, C, Gudas, LJ. Murine laminin B1 gene regulation during the retinoic acid- and dibutyryl cycic AMP-induced differentiation of embryonic stem cells. J Biol Chem 1996;271:6810–6818.Google Scholar
Sun, SY, Yue, P, Mao, L, Dawson, MI, Shroot, B, Lamph, WW, Heyman, RA, Chandraratna, RAS, Shudo, K, Hong, WK, Lotan, R. Identification of receptor-selective retinoids that are potent inhibitors of the growth of human head and neck squamous cell carcinoma cells. Clin Cancer Res 2000;6:1563–1573.Google ScholarPubMed
Sun, SY, Lotan, R. Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol 2002;41:41–55.CrossRefGoogle ScholarPubMed
Mehta, K. Retinoids as regulators of gene transcription. J Biol Regul Homeost Agents 2003;17:1–12.Google ScholarPubMed
Trump, DL. Retinoids in bladder, testes and prostate cancer: epidemiologic, preclinical and clinical observations. Leukemia 1994;8(Suppl 3):50–54.Google ScholarPubMed
Yoskitake, T, Itoyama, S. Treatment of primary mediastinal germ cell tumors. Tinsho Kyobu Geka 1989;9:29–34.Google Scholar
Bartlett, NL, Freiha, FS, Torti, FM. Serum markers in germ cell neoplasms. Hem/Oncol Clin N Am 1991;5:1245–1260.CrossRefGoogle ScholarPubMed
Stenman, U-H, Alfthan, H. Markers for testicular cancer. In Tumor markers (Diamandis, E, Fritsche, H, Lilha, H, Chan, D, Schwartz, M, eds). Washington, DC; AACC Press, 2002:351–359.Google Scholar
Rowley, JD. Nonrandom chromosomal abnormalities in hematologic disorders of man. Proc Natl Acad Sci U S A 1975;72:152–156.CrossRefGoogle Scholar
Nowell, PC. Diagnostic and prognostic value of chromosome studies in cancer. Ann Clin Lab Sci 1974;4:234–240. AN AACR SCIENTIFIC LANDMARKGoogle Scholar
Baird, SM. Hepatopoietic stem cells in leukemia and lymphoma. In Stem cells handbook (Sell, S, ed). Totowa, NJ; Humana Press, 2004:163–175.Google Scholar
Drucher, BJ, Ralpaz, M, Resta, DJ, Peng, B, Buchdunger, E, Ford, JM, Lydon, NB, Kantarjian, J, Capdeville, R, Ohno-Jones, S, Sawyers, CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;334:1031–1037. AN AACR SCIENTIFIC LANDMARKCrossRefGoogle Scholar
Druker, BJ, Guilhot, F, O'Brien, SG, Gathmann, I, Kantarjian, H, Gattermann, N, Deininger, MW, Silver, RT, Goldman, JM, Stone, RM, Cervantes, F, Hochhaus, A, Powell, BL, Gabrilove, JL, Rousselot, P, Reiffers, J, Cornelissen, JJ, Hughes, T, Agis, H, Fischer, T, Verhoef, G, Shepherd, J, Saglio, G, Gratwohl, A, Nielsen, JL, Radich, JP, Simonsson, B, Taylor, K, Baccarani, M, So, C, Letvak, L, Larson, RA; IRIS Investigators. Five year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408–2417.CrossRefGoogle ScholarPubMed
Puttini, M, Coluccia, AM, Boschelli, F, Cleris, L, Marchesi, E, Donella-Deana, A, Ahmed, S, Redaelli, S, Piazza, R, Magistroni, V, Andreoni, F, Scapozza, L, Formelli, F, Gambacorti-Passerini, C. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+neoplastic cells. Cancer Res 2006;66:11314–11322.CrossRefGoogle ScholarPubMed
Nowell, PC, Hungerford, DA. A minute chromosome in human granulocytic leukemia. Science 1960;132:1497–1499.Google Scholar
Randolph, TR. Chronic meylocytic leukemia – Part I: history, clinical presentation and molecular biology. Clin Lab Sci 2005;18:38–48.Google ScholarPubMed
Tefferi, A, Dewald, GE, Litsov, MO, Cortes, J, Mauro, MJ, Talpaz, M, Kantarjian, HM. Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment. Mayo Clin Proc 2005;80:390–402.CrossRefGoogle ScholarPubMed
O'Brien, S, Tefferi, A, Valent, F. Chronic myelogenous leukemia and myeloproliferative disease. Hematology 2004:146–162.CrossRefGoogle ScholarPubMed
Kharas, MG, Fruman, DA. ABL oncogenes and phosphinositide 3-kinase: mechanism of activation and downstream effects. Cancer Res 2005;65:2047–2053.CrossRefGoogle Scholar
Deninger, M, Buchdunger, E, Druker, BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005;105:2640–2643.CrossRefGoogle Scholar
Blay, JY, LeCesne, A, Alberti, L, Ray-Coquart, I. Targeted cancer therapies. Bull Cancer 2005;92:E13–E18.Google ScholarPubMed
McKenzie, SB. Advances in understanding the biology and genetics of acute myelocytic leukemia. Clin Lab Sci 2005;18:28–37.Google ScholarPubMed
Goldman, J. Monitoring minimal residual disease in BDR-ABL positive chronic myeloid leukemia in the imatinib era. Curr Opin Hematol 2005;12:33–39.CrossRefGoogle ScholarPubMed
Melnick, A, Licht, JD. Deconstructing a disease: RARα, ins fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93:3167–3215.Google Scholar
Soignet, S, Fleischauer, A, Pollyak, T, Heller, G, Warrel, RP. All trans retinoic acid significantly increases 5-year survival in patients with acute promyelocytic leukemia: long term follow-up of the New York study. Cancer Chemother Pharmacol 1997;40:S24–S29.CrossRefGoogle ScholarPubMed
Seeler, JS, Dehean, A. The PML nuclear bodies: actors or extras?Curr Opin Genet Dev 1999;9:362–367.CrossRefGoogle ScholarPubMed
Zhong, S, Salomoni, P, Pandolifi, PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000;2:E85–E90.CrossRefGoogle ScholarPubMed
Pitha-Rowe, I, Petty, WJ, Kitareewan, S, Dmitrovsky, E. Retinoid target genes in acute promyelocytic leukemia. Leukemia 2003;17:1723–1730.CrossRefGoogle ScholarPubMed
Melnick, A, Licht, JD. Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;99:3167–3215.Google Scholar
Segalla, S, Rinaldi, L, Kilstrup-Nielsen, C, Badaracco, G, Minucci, S, Pelicci, PG, Landsberger, N. Retinoic acid receptor alpha fusion to PML affects in transcriptional and chromatin-remodeling properties. Mol Cell Biol 2003;23:8795–8808.CrossRefGoogle ScholarPubMed
Dragnev, KH, Petty, WJ, Dmitrovsky, E. Retinoid targets in cancer therapy and chemoprevention. Cancer Biol Ther 2003;2(Suppl 1):150–156.CrossRefGoogle ScholarPubMed
Warrell, RP, Frankel, SR, Miller, WH, Scheinberg, DA, Itri, LM, Hittelman, WN, Vyan, R, Andreeff, M, Tafuri, A, Jakubowski, A, Gabilove, J, Gordon, MS, Smitrovsky, E. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl Med 1991;324:1385–1393.CrossRefGoogle ScholarPubMed
Camacho, LH. Clinical application of retinoids in cancer medicine. J Biol Regul Homeost Agents 2003;17:98–114.Google Scholar
Ohno, R, Asou, N, Ohnishi, K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia 2003;17:1454–1463.CrossRefGoogle ScholarPubMed
Parmar, S, Tallman, MS. Acute promyelocytic leukaemia: a review. Expert Opin Pharmacother 2003;4:1379–1392.Google ScholarPubMed
Tallman, MS, Andersen, JW, Schiffer, CA, Appelbaum, FR, Feusner, JH, Woods, WG, Ogden, A, Weinstein, H, Shepherd, L, Willman, C, Bloomfield, CD, Rowe, JM, Wiernik, PH. All-trans-retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from North American Intergroup protocol. Blood 2002;100:4298–4302.CrossRefGoogle ScholarPubMed
Freemantle, SJ, Spinella, MJ, Dmitrovsky, E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 2003;22:7305–7315.CrossRefGoogle ScholarPubMed
Chalandon, Y, Schwaller, J. Targeting mutated protein tyrosine kinases and their signaling pathways in hematologic malignancies. Haematologica 2005;90:949–968.Google ScholarPubMed
Feldman, EJ. Farnesyltransferase inhibitors in myelodysplastic syndrome. Curr Hematol Rep 2005;4:186–190.Google ScholarPubMed
Lancet, JE, Karp, JE. Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood 2003;102:3880–3889.CrossRefGoogle ScholarPubMed
Levis, M. Recent advances in the development of small-molecule inhibitors for the treatment of acute myeloid leukemia. Curr Opin Hematol 2005;12:55–61.CrossRefGoogle ScholarPubMed
Robinson, LJ, Xue, J, Corey, SJ. Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations. Exp Hematol 2005;33:469–479.CrossRefGoogle ScholarPubMed
Ono, R, Nakajima, H, Ozaki, K, Kumagai, H, Kawashima, T, Taki, T, Kitamura, T, Hayashi, Y, Nosaka, T. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005;115:919–929.CrossRefGoogle ScholarPubMed
Gilliand, DG, Griffin, JD. The role of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1332–1342.Google Scholar
Stone, RM, O'Donnell, MR, Sekeres, MA. Acute myeloid leukemia. Hematology 2004: 98–117.CrossRefGoogle ScholarPubMed
Withers, HR, Reid, BO, Hussey, DH. Response of mouse jejunum to multifraction radiation. Int J Radiat Oncol Biol Phys 1975;1:41–52.CrossRefGoogle ScholarPubMed
Lange, CS, Gilbert, CS. Studies on the cellular basis of radiation lethality. 3. The measurement of stem-cell repopulation probability. Int J Radiat Biol Relat Stud Phys Chem Med 1968;14:373–388.CrossRefGoogle ScholarPubMed
Peters, R, Layvaz, S, Perey, L. Apoptotic regulation in primitive hematopoietic precursors. Blood 1998;92:2041–2051.Google ScholarPubMed
Domen, J, Gandy, KL, Weissman, IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 1998;91:2272–2282.Google ScholarPubMed
Chaudhary, PM, Roninson, IB. Expression and activity of P-glycoprotein, a multi-drug efflux pump, in human hematopoietic stem cells. Cell 1991;66:85–94.CrossRefGoogle Scholar
Goodell, MA, Brose, K, Paradis, G, Conner, AS, Mulligan, RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183:1797–1806.CrossRefGoogle ScholarPubMed
Hirschmann-Jax, C, Foster, AE, Wulf, GG, Nuchtern, JG, Jax, TW, Gobel, U, Goodel, MA, Brenner, MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004;101:14228–14233.CrossRefGoogle ScholarPubMed
McCulloch, EA. Normal and leukemic hematopoietic stem cells and lineages. In Stem cells handbook (Sell, S, ed). Totowa, NJ; Humana Press, 2004:119–131.Google Scholar
Sutherland, HJ, Blair, A, Zapf, RW. Characterization of a hierarchy in human acute myeloid leukemia progenitor cells. Blood 1996;87:4754–4761.Google ScholarPubMed
Bonnet, D, Dick, JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 1997;3:730–737.CrossRefGoogle ScholarPubMed
Kelly, PN, Dakic, A, Adams, JM, Nutt, SL, Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 2007;317:337.CrossRefGoogle Scholar
Wicha, MS, Liu, S, Dontu, G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res 2006;66:1883–1890.CrossRefGoogle ScholarPubMed
Tan, BT, Park, CY, Ailles, , Weissman, IL. The cancer stem cell hypothesis: a work in progress. Lab Invest 2006;86:1203–1207.CrossRefGoogle ScholarPubMed
Trott, KR. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother Oncol 1994;30:1–5.CrossRefGoogle ScholarPubMed
Denekamp, J. Tumour stem cells: facts, interpretation and consequences. Radiother Oncol 1994;30:6–10.CrossRefGoogle ScholarPubMed
Pierce, GB, Spears, WC. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res 1988;48:1196–1204.Google ScholarPubMed
Adams, JM, Strasser, A. Is tumor growth sustained by rare cancer stem cells or dominant clones?Cancer Res 2008;68:4018–4021.CrossRefGoogle ScholarPubMed
Kern, SE, Shibata, D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 2007;67:8985–8988.CrossRefGoogle ScholarPubMed
Li, C, Heidt, DG, Dalerba, P, Burant, CF, Zhang, L, Adsay, V, Wicha, M, Clarke, MF, Simeone, DM. Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–1037.CrossRefGoogle ScholarPubMed
Furth, J, Kahn, MC. The transmission of leukemia of mice with a single cell. Am J Cancer 1937;31:276–282. AN AACR SCIENTIFIC LANDMARKGoogle Scholar
Sell, S. Cancer and stem cell signaling: a guide to preventive and therapeutic strategies for cancer stem cells. Stem Cell Rev 2007;3:1–6.CrossRefGoogle ScholarPubMed
Hill, RP, Perris, R. Destemming cancer stem cells. J Natl Cancer Inst 2007;99:1435–1440.CrossRefGoogle ScholarPubMed
Ivanova, N, Dobrin, R, Lu, R, Kotenko, I, Levorse, J, DeCoste, C, Schafer, X, Lun, Y, Lemischka, IR. Dissecting self-renewal in stem cells with RNA interference. Nature 2006;442:533–538.CrossRefGoogle ScholarPubMed
Sell, S (ed). Cancer and stem cell signaling [special issue]. Stem Cell Rev 2007;3:1–103.
Dreesen, O, Brivanlou, AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 2007;3:7–17.CrossRefGoogle ScholarPubMed
Farnie, G, Clarke, RB. Mammary stem cells and breast cancer – role of Notch signaling. Stem Cell Rev 2007;3:169–175.CrossRefGoogle Scholar
Menendez, P, Wang, L, Bhatia, M. Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications. Curr Gene Ther 2005;5:375–385.CrossRefGoogle ScholarPubMed
Hay, DC, Sutherland, L, Clark, J, Burdon, T. Oct4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004;22:225–235.CrossRefGoogle Scholar
Matin, MM, Walsh, JR, Gokhale, PJ, Draper, JS, Bahrami, AR, Morton, I, Moore, HD, Andrews, PW. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 2004;22:659–668.CrossRefGoogle ScholarPubMed
Zaehres, H, Lensch, ME, Daheron, J, Stewart, SA, Itskovitz-Eldor, J, Daley, GQ. High-efficiency RNA interference in human embryonic stem cells. Stem Cells 2005;23:299–305.CrossRefGoogle ScholarPubMed
Sprading, A, Drummond-Barbarosa, D, Kai, T. Stem cells find their niche. Nature 2002;414:98–104.CrossRefGoogle Scholar
Wodarz, A, Nusse, E. Mechanisms of Wnt signaling pathways in development. Annu Rev Cell Dev Biol 1998;14:59–88.CrossRefGoogle Scholar
Tai, M-H, Chang, C-C, Olson, K, Trosko, JE. Oct-4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005;26:495–502.CrossRefGoogle Scholar
Nicholoff, BJ, Hendrix, MJ, Pollock, PM, Trent, JM, Miele, L, Zin, JZ. Notch and NOXA-related pathways in melanoma cells. J Invest Dermatol Symp Proc 2005;10:95–104.CrossRefGoogle Scholar
Callahan, R, Egan, SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004;9:145–163.CrossRefGoogle ScholarPubMed
Kubo, M, Nakamura, M, Tasaki, A, Yamanaka, N, Nakashima, H, Homura, M, Kuroki, S, Katano, M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004;64:6071–6074.CrossRefGoogle ScholarPubMed
Howe, LR, Brown, AM. Wnt signaling and breast cancer. Cancer Biol Ther 2004;3:36–41.CrossRefGoogle ScholarPubMed
Brennan, KR, Brown, AM. Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia 2004;9:119–131.CrossRefGoogle ScholarPubMed
Milovanovic, T, Planutis, K, Nguyen, A, Marsh, JL, Lin, F, Hope, C, Holcombe, RF. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol 2004;25:1337–1342.Google ScholarPubMed
Katoh, M. Expression and regulation of Wnt-1 in human cancer: up-regulation of Wnt-1 by beta-estradiol in MCF-7 cells. Int J Oncol 2003;22:209–212.Google ScholarPubMed
Saitoh, T, Katoh, M. Expression and regulation of WNT5A and WNT5B in human cancer: up-regulation of WNT5A by TNFalpha in MKN45 cells and up-regulation of WNT5B by beta-estradiol in MCF-7 cells. Int J Mol Med 2002;10:345–349.Google ScholarPubMed
Katoh, M. Regulation of WNT3 and WNT3A mRNAs in human cancer cell lines. Int J Oncol 2002;20:373–377.Google ScholarPubMed
Mishra, L, Shetty, K, Tang, Y, Stuart, A, Byers, SW. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 2005;24:5775–5789.CrossRefGoogle ScholarPubMed
Nagae, Y, Kameyama, K, Yokoyama, M, Naito, Z, Yamada, N, Maeda, S, Asano, G, Sugisaki, Y, Tanaka, S. Expression of E-cadherin, catenin and C-erb-2 gene products in invasive ductal-type breast carcinomas. J Nippon Med Sch 2002;69:165–171.CrossRefGoogle Scholar
Jaing, WG, Mansel, RE. E-cadherin complex and its abnormal sites in human breast cancer. Surg Oncol 2000;9:151–171.CrossRefGoogle Scholar
Lu, Z, Ghosh, S, Wang, Z, Hunter, T. Down-regulation of caveolin-1 function by EGF leads to loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 2003;4:499–515.CrossRefGoogle ScholarPubMed
Schroeder, JA, Adriance, MC, McConnell, EJ, Thompson, MC, Pckaj, B, Gendler, SJ. ErbB-beta-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J Biol Chem 2002;277:22692–22698.CrossRefGoogle ScholarPubMed
Glinsky, GV, Berezovska, O, Glinskii, AB. Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005;115:1503–1521.CrossRefGoogle Scholar
Glinsky, GV. Death-from-cancer signatures and contribution of stem cells to metastatic cancer. Cell Cycle 2005;4:1171–1175.CrossRefGoogle ScholarPubMed
Glinsky, GV. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle 2006;5:1208–1216.CrossRefGoogle ScholarPubMed
Glinsky, GV. Integration of HapMap-based SNP pattern analysis and gene expression profiling reveals common SNP profiles for cancer therapy outcome predictor genes. Cell Cycle 2006;5:2613–2625.CrossRefGoogle ScholarPubMed
Liu, S, Dontu, G, Mantle, ID, Patel, S, Ahn, NS, Jackson, KW, Suri, P, Wicha, MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66:6063–6071.CrossRefGoogle ScholarPubMed
Berezovska, OP, Glinskii, AB, Yang, Z, Li, XM, Hoffman, RM, Glinsky, GV. Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 2006;5:1886–1901.Google ScholarPubMed
Zhou, J, Zhang, H, Gu, P, Bai, J, Margolick, JB, Zhang, Y. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 2008;111(3):419–427.CrossRefGoogle ScholarPubMed
Rye, PD, Stigbrand, T. Interfering with cancer: a brief outline of advances in RNA interference in oncology. Tumor Biol 2004;25:329–336.CrossRefGoogle Scholar
Sorensen, DR, Leirdal, M, Sioud, M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003;327:761–776.CrossRefGoogle ScholarPubMed
Pirollo, KF, Chang, EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res 2008;68:1247–1250.CrossRefGoogle ScholarPubMed
Pirollo, KF, Rait, A, Zhou, Q, Hwang, SH, Dagata, JA, Zon, G, Hogrefe, RI, Palchik, G, Chang, EH. Materializing the potential of small interfering RNA via tumor-targeting nanodelivery system. Cancer Res 2007;67:2938–2943.CrossRefGoogle ScholarPubMed
Zamecnik, PC, Stephenson, ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific ologodeoxynucleotide. Proc Natl Acad Sci U S A 1978;75:280–284.CrossRefGoogle Scholar
Harrington, KJ, Nutting, CM, Pandha, HS. Gene therapy for head and neck cancer. Cancer Metastasis Rev 2005;24:147–164.CrossRefGoogle ScholarPubMed
Skorski, T, Neiborowska-Skorska, M, Barletta, C, Malaguamera, L, Szczylik, C, Chen, S-T, Lang, B, Calabretta, B. Highly efficient elimination of Philadelphia1 leukemic cells by exposure to bcr/abl antisense oligodeoxynucleotides combined with mafosfamide. J Clin Invest 1993;92:194–202.CrossRefGoogle Scholar
Liebermann, TA, Zerbini, LF. Targeting transcription factors for cancer gene therapy. Curr Gene Ther 2006;6:17–33.CrossRefGoogle Scholar
Hanazono, Y, Asano, T, Ueda, Y, Ozawa, K. Genetic manipulation of primate embryonic and hematopoietic stem cells with simian lentivirus vectors. Trends Cardiovasc Med 2003;13:371–378.CrossRefGoogle ScholarPubMed
Ikawa, M, Tanaka, N, Kao, WW, Verma, IM. Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 2003;8:666–673.CrossRefGoogle ScholarPubMed
Al-Haji, M, Wicha, MS, Benito-Hernandez, A, Morrison, SJ, Clarke, MR. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–3988.CrossRefGoogle Scholar
Shipitsin, M, Campbell, LL, Argani, P, Weremowicz, S, Bloushtain-Qimron, N, Yao, J, Nikolskaya, T, Serebryiskaya, T, Beroukhim, R, Hu, M, Halushka, MK, Sukumar, S, Parker, LM, Anderson, KS, Harris, LN, Garber, JE, Richardson, AL, Schnitt, SJ, Nikolsky, Y, Gelman, RS, Polyak, K. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007;11:259–273.CrossRefGoogle ScholarPubMed
Korsching, E, Jeffrey, SS, Meinerz, W, Decker, T, Boecker, W, Buerger, H. Basal carcinoma of the breast revisited: an old entity with new interpretations. J Clin Pathol 2008;61:553–560.CrossRefGoogle ScholarPubMed
Roskoski, RStructure and regulation of Kit protein-tyrosine kinase – the stem cell factor receptor. Biochem Biophys Res Commun 2005;338:1307–1315.CrossRefGoogle ScholarPubMed
Lennartsson, J, Jelacic, T, Linnekin, D, Shivakrupa, R. Normal and oncogenic forms of the receptor tyrosine kinase Kit. Stem Cells 2005;23:16–43.CrossRefGoogle ScholarPubMed
Bijver, M. Gene-expression profiling and the future of adjuvant therapy. Oncologist 2005;10(Suppl 2):30–34.Google Scholar
Toren, A, Bielora, B, Jacob-Hirsch, J, Fisher, T, Kreiser, D, Moran, O, Zeligson, S, Givol, D, Yitzhaky-Eldor, J, Kventsel, I, Rosenthal, E, Amarigilio, N, Rechavi, R. CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 2005;23:1142–1153.CrossRefGoogle ScholarPubMed
Dar, A, Goichberg, P, Shinder, V, Kalinkovich, A, Kollet, O, Netzer, N, Margalit, R, Zsak, M, Nagler, A, Hardan, I, Resnick, I, Rot, A, Lapidot, T. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature Immunol 2005;6:1038–1046.CrossRefGoogle ScholarPubMed
Weissman, IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000;100:157–168.CrossRefGoogle Scholar
Kiel, MJ, Yilmaz, OH, Iwashita, T, Yilmaz, OS, Terhorst, C, Morrison, SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121:1109–1121.CrossRefGoogle ScholarPubMed
Sell, S. Oncodevelopmental antigens: a review. Cancer Biol Rev 1980;1:251–352.Google Scholar
Nomura, K, Nagano, K, Itagaki, C, Raoka, M, Okamura, N, Yamauchi, Y, Sugano, S, Takahashi, N, Izumi, T, Isobe, T. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 2005;4:1968–1976.CrossRefGoogle Scholar
Deicher, R, Hori, WH. Differentiating factors between erythropoiesis-stimulating agents: a guide to selection for anemia of chronic kidney disease. Drug 2004;54:499–509.CrossRefGoogle Scholar
Nowell, PC. The clonal evolution of tumor cell populations. Science 1976;194:23–28.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×