Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T15:20:49.556Z Has data issue: false hasContentIssue false

Part V - Extremities

Published online by Cambridge University Press:  01 December 2023

Omar Viswanath
Affiliation:
Creighton University, Omaha
Ivan Urits
Affiliation:
Southcoast Brain & Spine Center, Wareham
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Wang, L. Guiding treatment for carpal tunnel syndrome. Phys Med Rehabil Clin N Am. 2018;29:751760.CrossRefGoogle ScholarPubMed
Wipperman, J, Goerl, K. Carpal tunnel syndrome: Diagnosis and management. Am Fam Physician. 2016;94(12):993999.Google ScholarPubMed
Gillig, JD, White, SD, Rachel, JN. Acute carpal tunnel syndrome. A Review of Current Literature Orthop Clin North Am. 2016;47(3):599607.CrossRefGoogle ScholarPubMed
Weiss, AP, Sachar, K, Gendreau, M. Conservative management of carpal tunnel syndrome: A reexamination of steroid injection and splinting. The Journal of Hand Surgery. 1994;19(3):410415.CrossRefGoogle ScholarPubMed
Huisstede, BM, van den Brink, J, Randsdorp, MS, Geelen, SJ, Koes, BW. Effectiveness of surgical and postsurgical interventions for carpal tunnel syndrome: A systematic review. Arch Phys Med Rehabil. 2018;99(8):16601680.CrossRefGoogle ScholarPubMed
Ingram, J, Mauck, BM, Thompson, NB, Calandruccio, JH. Cost, value, and patient satisfaction in carpal tunnel surgery. Orthop Clin North Am. 2018;49(4):503507.CrossRefGoogle ScholarPubMed
Padua, L, Coraci, D, Erra, C et al. Carpal tunnel syndrome: Clinical features, diagnosis, and management. Lancet Neurol. 2016;15(12):12731284.CrossRefGoogle ScholarPubMed
Wipperman, J, Goerl, K. Carpal tunnel syndrome: Diagnosis and management. Am Fam Physician. 2016;94(12):993999.Google ScholarPubMed
Sharma, D, Jaggi, AS, Bali, A. Clinical evidence and mechanisms of growth factors in idiopathic and diabetes-induced carpal tunnel syndrome. Eur J Pharmacol. 2018;837:156163.CrossRefGoogle ScholarPubMed
Minieka, MM, Nishida, T, Benzon, H. Chapter 56 – Entrapment neuropathies. In Honorio T. Benzon, Srinivasa N. Raja, Spencer S. Liu, et al. (eds.). Essentials of Pain Medicine, 3rd ed. Elsevier; 2011. pp. 395402.CrossRefGoogle Scholar
Festen-Schrier, VJMM, Amadio, PC. The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel syndrome. J Electromyogr Kinesiol. 2018;38:232239.CrossRefGoogle ScholarPubMed
Papanas, N, Stamatiou, I, Papachristou, S. Carpal tunnel syndrome in diabetes mellitus. Curr Diabetes Rev. 2022;18(4):e010921196025. doi: 10.2174/1573399817666210901114610.CrossRefGoogle ScholarPubMed
Albers, JW, Pop-Busui, R. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep. 2014;14(8):473.CrossRefGoogle ScholarPubMed
Shiri, R. Arthritis as a risk factor for carpal tunnel syndrome: A meta-analysis. Scand J Rheumatol. 2016;45(5):339346.CrossRefGoogle ScholarPubMed
Hammer, HB, Hovden, IA, Haavardsholm, EA, Kvien, TK. Ultrasonography shows increased cross-sectional area of the median nerve in patients with arthritis and carpal tunnel syndrome. Rheumatology. 2006;45:584588.CrossRefGoogle ScholarPubMed
Karadag, O, Kalyoncu, U, Akdogan, A et al. Sonographic assessment of carpal tunnel syndrome in rheumatoid arthritis: Prevalence and correlation with disease activity. Rheumatol Int. 2012;32:23132319.CrossRefGoogle ScholarPubMed
Luckhaupt, SE, Dahlhamer, JM, Ward, BW et al. Prevalence and work-relatedness of carpal tunnel syndrome in the working population, United States, 2010 national health interview survey. Am J Ind Med. 2013;56(6):615624.CrossRefGoogle ScholarPubMed
Dale, AM, Harris-Adamson, C, Rempel, D, et al. Prevalence and incidence of carpal tunnel syndrome in US working populations: Pooled analysis of six prospective studies. Scand J Work Env Hea. 2013;39(5):495505.CrossRefGoogle ScholarPubMed
Palmer, KT, Harris, EC, Coggon, D. Carpal tunnel syndrome and its relation to occupation: A systematic literature review. Occup Med (Lond). 2007;57(1):5766.CrossRefGoogle ScholarPubMed
Franklin, GM, Friedman, AS. Work-related carpal tunnel syndrome: Diagnosis and treatment guideline. Phys Med Rehabil Clin N Am. 2015;26(3):523537.CrossRefGoogle ScholarPubMed
Sucher, BM, Schreiber, AL. Carpal tunnel syndrome diagnosis. Phys Med Rehabil Clin N Am. 2014;25(2):229247.CrossRefGoogle ScholarPubMed
Zhang, D, Chruscielski, CM, Blazar, P, Earp, BE. Accuracy of provocative tests for carpal tunnel syndrome. J Hand Surg Glob Online. 2020;2(3):121125.CrossRefGoogle ScholarPubMed
Sasaki, T, Makino, K, Nimura, A et al. Assessment of grip-motion characteristics in carpal tunnel syndrome patients using a novel finger grip dynamometer system. J Orthop Surg Res. 2020;15(1):245.CrossRefGoogle ScholarPubMed
Sonoo, M, Menkes, DL, Bland, JDP, Burke, D. Nerve conduction studies and EMG in carpal tunnel syndrome: Do they add value? Clin Neurophysiol Pract. 2018;3:7888.CrossRefGoogle ScholarPubMed
Alanazy, MH. Clinical and electrophysiological evaluation of carpal tunnel syndrome: Approach and pitfalls. Neurosciences (Riyadh). 2017;22(3):169180.CrossRefGoogle ScholarPubMed
Mills, KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 2):ii32–ii35.CrossRefGoogle ScholarPubMed
Duckworth, AD, Jenkins, PJ, McEachan, JE. Diagnosing carpal tunnel syndrome. J Hand Surg Am. 2014;39(7):14031407.CrossRefGoogle ScholarPubMed
Fowler, JR, Munsch, M, Tosti, R, Hagberg, WC, Imbriglia, JE. Comparison of ultrasound and electrodiagnostic testing for diagnosis of carpal tunnel syndrome: Study using a validated clinical tool as the reference standard. J Bone Joint Surg Am. 2014;96(17):e148.CrossRefGoogle ScholarPubMed
Page, MJ, Massy-Westropp, N, O’Connor, D, Pitt, V. Splinting for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;7:CD010003.Google Scholar
Gatheridge, MA, Sholty, EA, Inman, A et al. Splinting in carpal tunnel syndrome: The optimal duration. Mil Med. 2020;185(11–12):e2049e2054.CrossRefGoogle ScholarPubMed
Krause, D, Roll, SC, Javaherian-Dysinger, H, Daher, N. Comparative efficacy of the dorsal application of Kinesio tape and splinting for carpal tunnel syndrome: A randomized controlled trial. J Hand Ther. 2021;34(3):351361.CrossRefGoogle ScholarPubMed
Golriz, B, Ahmadi Bani, M, Arazpour, M et al. Comparison of the efficacy of a neutral wrist splint and a wrist splint incorporating a lumbrical unit for the treatment of patients with carpal tunnel syndrome. Prosthet Orthot Int. 2016;40(5):617623.CrossRefGoogle Scholar
Page, MJ, O’Connor, D, Pitt, V, Massy-Westropp, N. Exercise and mobilisation interventions for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;(6):CD009899.Google ScholarPubMed
Ijaz, MJ, Karimi, H, Ahmad, A et al. Comparative efficacy of routine physical therapy with and without neuromobilization in the treatment of patients with mild to moderate carpal tunnel syndrome. Biomed Res Int. 2022; 2022:2155765.CrossRefGoogle ScholarPubMed
Wolny, T, Saulicz, E, Linek, P, Shacklock, M, Myśliwiec, A. Efficacy of manual therapy including neurodynamic techniques for the treatment of carpal tunnel syndrome: A randomized controlled trial. J Manipulative Physiol Ther. 2017;40(4):263272.CrossRefGoogle ScholarPubMed
Shem, K, Wong, J, Dirlikov, B. Effective self-stretching of carpal ligament for the treatment of carpal tunnel syndrome: A double-blinded randomized controlled study. J Hand Ther. 2020;33(3):272280.CrossRefGoogle ScholarPubMed
Hamzeh, H, Madi, M, Alghwiri, AA, Hawamdeh, Z. The long-term effect of neurodynamics vs exercise therapy on pain and function in people with carpal tunnel syndrome: A randomized parallel-group clinical trial. J Hand Ther. 2021;34(4):521530.CrossRefGoogle ScholarPubMed
Lewis, KJ, Coppieters, MW, Ross, L et al. Group education, night splinting and home exercises reduce conversion to surgery for carpal tunnel syndrome: A multicentre randomised trial. J Physiother. 2020;66(2):97104.CrossRefGoogle ScholarPubMed
Horng, YS, Hsieh, SF, Tu, YK et al. The comparative effectiveness of tendon and nerve gliding exercises in patients with carpal tunnel syndrome: A randomized trial. Am J Phys Med Rehabil. 2011;90(6):435442.CrossRefGoogle ScholarPubMed
Paquette, P, Higgins, J, Danino, MA, Harris, P, Lamontagne, M, Gagnon, DH. Effects of a preoperative neuromobilization program offered to individuals with carpal tunnel syndrome awaiting carpal tunnel decompression surgery: A pilot randomized controlled study. J Hand Ther 2021;34(1):3746.CrossRefGoogle ScholarPubMed
Huisstede, BM, Hoogvliet, P, Randsdorp, MS et al. Carpal tunnel syndrome: Part I: Effectiveness of nonsurgical treatments – a systematic review. Arch Phys Med Rehabil. 2010;91(7):9811004.CrossRefGoogle ScholarPubMed
Page, MJ, O’Connor, D, Pitt, V, Massy-Westropp, N. Therapeutic ultrasound for carpal tunnel syndrome. Cochrane Database Syst Rev. 2013;2013(3):CD009601.Google ScholarPubMed
Gesslbauer, C, Mickel, M, Schuhfried, O et al. Effectiveness of focused extracorporeal shock wave therapy in the treatment of carpal tunnel syndrome: A randomized, placebo-controlled pilot study. Wien Klin Wochenschr. 2021;133(11–12):568577.CrossRefGoogle ScholarPubMed
Wu, YT, Ke, MJ, Chou, YC et al. Effect of radial shock wave therapy for carpal tunnel syndrome: A prospective randomized, double-blind, placebo-controlled trial. J Orthop Res. 2016;34(6):977984.CrossRefGoogle ScholarPubMed
Paoloni, M, Tavernese, E, Cacchio, A et al. Extracorporeal shock wave therapy and ultrasound therapy improve pain and function in patients with carpal tunnel syndrome: A randomized controlled trial. Eur J Phys Rehabil Med. 2015;51(5):521528.Google ScholarPubMed
Ke, MJ, Chen, LC, Chou, YC et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: A prospective, randomized, single-blind, placebo-controlled trial. Sci Rep. 2016;6:38344.CrossRefGoogle ScholarPubMed
Atthakomol, P, Manosroi, W, Phanphaisarn, A et al. Comparison of single-dose radial extracorporeal shock wave and local corticosteroid injection for treatment of carpal tunnel syndrome including mid-term efficacy: A prospective randomized controlled trial. BMC Musculoskelet Disord. 2018;19(1):32.CrossRefGoogle ScholarPubMed
Seok, H, Kim, SH. The effectiveness of extracorporeal shock wave therapy vs. local steroid injection for management of carpal tunnel syndrome: A randomized controlled trial. Am J Phys Med Rehabil. 2013;92(4):327334.CrossRefGoogle ScholarPubMed
Habibzadeh, A, Mousavi-Khatir, R, Saadat, P, Javadian, Y. The effect of radial shockwave on the median nerve pathway in patients with mild-to-moderate carpal tunnel syndrome: A randomized clinical trial. J Orthop Surg Res. 2022;17(1):46.CrossRefGoogle ScholarPubMed
Marshall, S, Tardif, G, Ashworth, N. Local corticosteroid injection for carpal tunnel syndrome. Cochrane Database Syst Rev. 2007;(2):CD001554.Google ScholarPubMed
Atroshi, I, Flondell, M, Hofer, M, Ranstam, J. Methylprednisolone injections for the carpal tunnel syndrome: A randomized, placebo-controlled trial. Ann Intern Med. 2013;159(5):309317.CrossRefGoogle ScholarPubMed
Karadaş, Ö, Tok, F, Akarsu, S, Tekin, L, Balaban, B. Triamcinolone acetonide vs procaine hydrochloride injection in the management of carpal tunnel syndrome: Randomized placebo-controlled study. J Rehabil Med. 2012;44(7):601604.CrossRefGoogle ScholarPubMed
Peters-Veluthamaningal, C, Winters, JC, Groenier, KH, Meyboom-de Jong, B. Randomised controlled trial of local corticosteroid injections for carpal tunnel syndrome in general practice. BMC Fam Pract. 2010;11:54.CrossRefGoogle ScholarPubMed
So, H, Chung, VCH, Cheng, JCK, Yip, RML. Local steroid injection versus wrist splinting for carpal tunnel syndrome: A randomized clinical trial. Int J Rheum Dis. 2018;21(1):102107.CrossRefGoogle ScholarPubMed
Evers, S, Bryan, AJ, Sanders, TL et al. Corticosteroid injections for carpal tunnel syndrome: Long-term follow-up in a population-based cohort. Plast Reconstr Surg. 2017;140(2):338347.CrossRefGoogle Scholar
Guo, XY, Xiong, MX, Zhao, Y et al. Comparison of the clinical effectiveness of ultrasound-guided corticosteroid injection with and without needle release of the transverse carpal ligament in carpal tunnel syndrome. Eur Neurol. 2017;78(1–2):3340.CrossRefGoogle ScholarPubMed
Racasan, O, Dubert, T. The safest location for steroid injection in the treatment of carpal tunnel syndrome. J Hand Surg Br. 2005;30(4):412414.CrossRefGoogle ScholarPubMed
Green, DP, MacKay, BJ, Seiler, SJ, Fry, MT. Accuracy of carpal tunnel injection: A prospective evaluation of 756 patients. Hand (N Y), 2020;15(1):5458.CrossRefGoogle ScholarPubMed
Babaei-Ghazani, A, Roomizadeh, P, Forogh, B et al. Ultrasound-guided versus landmark-guided local corticosteroid injection for carpal tunnel syndrome: A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2018;99(4):766775.CrossRefGoogle ScholarPubMed
Lee, JY, Park, Y, Park, KD, Lee, JK, Lim, OK. Effectiveness of ultrasound-guided carpal tunnel injection using in-plane ulnar approach: A prospective, randomized, single-blinded study. Medicine (Baltimore). 2014;93(29):e350.CrossRefGoogle ScholarPubMed
Malahias, MA, Chytas, D, Mavrogenis, AF et al. Platelet-rich plasma injections for carpal tunnel syndrome: A systematic and comprehensive review. Eur J Orthop Surg Traumatol. 2019;29(1):18.CrossRefGoogle ScholarPubMed
Catapano, M, Catapano, J, Borschel, G et al. Effectiveness of platelet-rich plasma injections for nonsurgical management of carpal tunnel syndrome: A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2020;101(5):897906.CrossRefGoogle ScholarPubMed
Rankin, IA, Sargeant, H, Rehman, H, Gurusamy, KS. Low‐level laser therapy for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2017;8(8):CD012765.Google ScholarPubMed
Scholten, RJPM, Mink van der Molen, A, Uitdehaag, BMJ, Bouter, LM, de Vet, HCW. Surgical treatment options for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2007;(4):CD003905. doi: 10.1002/14651858.CD003905.pub3.Google ScholarPubMed
Verdugo, RJ, Salinas, RA, Castillo, JL, Cea, G. Surgical versus non‐surgical treatment for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2008;(4):CD001552. doi: 10.1002/14651858.CD001552.pub2.Google ScholarPubMed
Vasiliadis, HS, Georgoulas, P, Shrier, I, Salanti, G, Scholten, RJ. Endoscopic release for carpal tunnel syndrome. Cochrane Database Syst Rev. 2014;(1):CD008265.Google ScholarPubMed

References

Neviaser, AS, Neviaser, RJ. Adhesive capsulitis of the shoulder. J Am Acad Orthop Surg. 2011;19(9):536542.CrossRefGoogle ScholarPubMed
Tighe, CB, Oakley, WS Jr. The prevalence of a diabetic condition and adhesive capsulitis of the shoulder. South Med J. 2008;101(6):591595.CrossRefGoogle ScholarPubMed
Milgrom, C, Novack, V, Weil, Y et al. Risk factors for idiopathic frozen shoulder. Isr Med Assoc J. 2008;10(5):361364.Google ScholarPubMed
Kelley, MJ, Shaffer, MA, Kuhn, JE et al. Shoulder pain and mobility deficits: Adhesive capsulitis. J Orthop Sports Phys Ther. 2013;43(5):A131.CrossRefGoogle ScholarPubMed
Rundquist, PJ, Anderson, DD, Guanche, CA, Ludewig, PM. Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil. 2003;84(10):14731479.CrossRefGoogle ScholarPubMed
Ewald, A. Adhesive capsulitis: A review. Am Fam Physician. 2011;83(4):417422.Google ScholarPubMed
Rangan, A, Hanchard, N, McDaid, C. What is the most effective treatment for frozen shoulder? BMJ. 2016;354:i4162.CrossRefGoogle ScholarPubMed
Dias, R, Cutts, S, Massoud, S. Frozen shoulder. BMJ 2005;331(7530):14531456.CrossRefGoogle ScholarPubMed
Kingston, K, Curry, EJ, Galvin, JW, Li, X. Shoulder adhesive capsulitis: Epidemiology and predictors of surgery. J Shoulder Elbow Surg. 2018;27(8):14371443.CrossRefGoogle ScholarPubMed
Huang, SW, Lin, JW, Wang, WT et al. Hyperthyroidism is a risk factor for developing adhesive capsulitis of the shoulder: A nationwide longitudinal population-based study. Sci Rep. 2014;4:4183.CrossRefGoogle ScholarPubMed
Smith, SP, Devaraj, VS, Bunker, TD. The association between frozen shoulder and Dupuytren’s disease. J Shoulder Elbow Surg. 2001;10(2):149151.CrossRefGoogle ScholarPubMed
Yang, S, Park, DH, Ahn, SH et al. Prevalence and risk factors of adhesive capsulitis of the shoulder after breast cancer treatment. Support Care Cancer. 2017;25(4):13171322.CrossRefGoogle ScholarPubMed
Lo, SF, Chu, SW, Muo, CH et al. Diabetes mellitus and accompanying hyperlipidemia are independent risk factors for adhesive capsulitis: A nationwide population-based cohort study (version 2). Rheumatol Int. 2014;34(1):6774.CrossRefGoogle ScholarPubMed
Ryan, V, Brown, H, Minns Lowe, CJ, Lewis, JS. The pathophysiology associated with primary (idiopathic) frozen shoulder: A systematic review. BMC Musculoskelet Disord. 2016;17(1):340.CrossRefGoogle ScholarPubMed
Lho, YM, Ha, E, Cho, CH et al. Inflammatory cytokines are overexpressed in the subacromial bursa of frozen shoulder. J Shoulder Elbow Surg. 2013;22(5):666672.CrossRefGoogle ScholarPubMed
Hagiwara, Y, Mori, M, Kanazawa, K et al. Comparative proteome analysis of the capsule from patients with frozen shoulder. J Shoulder Elbow Surg. 2018;27(10):17701778.CrossRefGoogle ScholarPubMed
Fields, BKK, Skalski, MR, Patel, DB et al. Adhesive capsulitis: Review of imaging findings, pathophysiology, clinical presentation, and treatment options. Skeletal Radiol. 2019;48(8):11711184.CrossRefGoogle ScholarPubMed
Whelton, C, Peach, CA. Review of diabetic frozen shoulder. Eur J Orthop Surg Traumatol. 2018;28(3):363371.CrossRefGoogle ScholarPubMed
Wong, CK, Levine, WN, Deo, K et al. Natural history of frozen shoulder: Fact or fiction? A systematic review. Physio. 2017;103(1):4047.Google ScholarPubMed
Kim, SJ, Gee, AO, Hwang, JM, Kwon, JY. Determination of steroid injection sites using lidocaine test in adhesive capsulitis: A prospective randomized clinical trial. J Clin Ultrasound. 2015;43(6):353360.CrossRefGoogle ScholarPubMed
Bak, K, Sørensen, AK, Jørgensen, U et al. The value of clinical tests in acute full-thickness tears of the supraspinatus tendon: Does a subacromial lidocaine injection help in the clinical diagnosis? A prospective study. Arthrosc. 2010;26(6):734742.CrossRefGoogle ScholarPubMed
Tandon, A, Dewan, S, Bhatt, S, Jain, AK, Kumari, R. Sonography in diagnosis of adhesive capsulitis of the shoulder: A case-control study. J Ultrasound. 2017;20(3):227236.CrossRefGoogle ScholarPubMed
Page, MJ, Green, S, Kramer, S et al. Manual therapy and exercise for adhesive capsulitis (frozen shoulder). Cochrane Database Syst. Rev. 2014;8:CD011275.Google Scholar
Nakandala, P, Nanayakkara, I, Wadugodapitiya, S, Gawarammana, I. The efficacy of physiotherapy interventions in the treatment of adhesive capsulitis: A systematic review. J Back Musculoskelet Rehabil. 2021;34(2):195205.CrossRefGoogle ScholarPubMed
Noten, S, Meeus, M, Stassijns, G et al. Efficacy of different types of mobilization techniques in patients with primary adhesive capsulitis of the shoulder: A systematic review. Arch Phys Med Rehabil. 2016;97(5):815825.CrossRefGoogle ScholarPubMed
Mertens, MG, Meert, L, Struyf, F, Schwank, A, Meeus, M. Exercise therapy is effective for improvement in range of motion, function, and pain in patients with Frozen shoulder: A systematic review and meta-analysis. Arch Phys Med Rehabil. 2022;103(5):9981012.CrossRefGoogle ScholarPubMed
Costantino, C, Nuresi, C, Ammendolia, A, Ape, L, Frizziero, A. Rehabilitative treatments in adhesive capsulitis: A systematic review. J Sports Med Phys Fitness. 2022;62(11):15051511. doi: 10.23736/S0022-4707.22.13054-9.CrossRefGoogle ScholarPubMed
Tedla, JS, Sangadala, DR. Proprioceptive neuromuscular facilitation techniques in adhesive capsulitis: A systematic review and meta-analysis. J Musculoskelet Neuronal Interact. 2019;19(4):482491.Google ScholarPubMed
Buchbinder, R, Green, S, Youd, JM, Johnston, RV. Oral steroids for adhesive capsulitis. Cochrane Database Syst Rev. 2006;(4):CD006189.Google Scholar
van der Windt, DA, van der Heijden, GJ, Scholten, RJ, Koes, BW, Bouter, LM. The efficacy of non-steroidal anti-inflammatory drugs (NSAIDS) for shoulder complaints. A systematic review. J Clin Epidemiol. 1995;48(5):691704.CrossRefGoogle ScholarPubMed
Hsu, JE, Anakwenze, OA, Warrender, WJ, Abboud, JA. Current review of adhesive capsulitis. J Shoulder Elbow Surg. 2011;20(3):502514.CrossRefGoogle ScholarPubMed
Neviaser, AS, Hannafin, JA. Adhesive capsulitis: A review of current treatment. Am J Sports Med. 2010;38(11):23462356.CrossRefGoogle ScholarPubMed
Georgiannos, D, Markopoulos, G, Devetzi, E, Bisbinas, I. Adhesive capsulitis of the shoulder: Is there consensus regarding the treatment? A comprehensive review. Open Orthop J. 2017;11:6576.CrossRefGoogle ScholarPubMed
Song, A, Higgins, LD, Newman, J, Jain, NB. Glenohumeral corticosteroid injections in adhesive capsulitis: A systematic search and review. PM R. 2014;6(12):11431156.CrossRefGoogle ScholarPubMed
Griesser, MJ, Harris, JD, Campbell, JE, Jones, GL. Adhesive capsulitis of the shoulder: A systematic review of the effectiveness of intra-articular corticosteroid injections. J Bone Joint Surg Am 2011;93(18):17271733.CrossRefGoogle ScholarPubMed
Wang, W, Shi, M, Zhou, C et al. Effectiveness of corticosteroid injections in adhesive capsulitis of shoulder: A meta-analysis. Medicine (Baltimore) 2017;96(28):e7529.CrossRefGoogle ScholarPubMed
Xiao, RC, Walley, KC, DeAngelis, JP, Ramappa, AJ. Corticosteroid injections for adhesive capsulitis: A review. Clin J Sport Med. 2017;27(3):308320.CrossRefGoogle ScholarPubMed
Koh, KH. Corticosteroid injection for adhesive capsulitis in primary care: A systematic review of randomised clinical trials. Singapore Med J 2016;57(12):646657.CrossRefGoogle ScholarPubMed
Hettrich, CM, DiCarlo, EF, Faryniarz, D et al. The effect of myofibroblasts and corticosteroid injections in adhesive capsulitis. J Shoulder Elbow Surg. 2016;25(8):12741279.CrossRefGoogle ScholarPubMed
Shang, X, Zhang, Z, Pan, X, Li, J, Li, Q. Intra-articular versus subacromial corticosteroid injection for the treatment of adhesive capsulitis: A meta-analysis and systematic review. Biomed Res Int. 2019;1274790. doi: 10.1155/2019/1274790. PMID: 31737653CrossRefGoogle Scholar
Blanchard, V, Barr, S, Cerisola, FL. The effectiveness of corticosteroid injections compared with physiotherapeutic interventions for adhesive capsulitis: A systematic review. Physiotherapy 2010;96(2):95107.CrossRefGoogle ScholarPubMed
Widiastuti-Samekto, M, Sianturi, GP. Frozen shoulder syndrome: Comparison of oral route corticosteroid and intra-articular corticosteroid injection. Med J Malaysia. 2004;59(3):312316.Google ScholarPubMed
Zadro, J, Rischin, A, Johnston, RV, Buchbinder, R. Image-guided glucocorticoid injection versus injection without image guidance for shoulder pain. Cochrane Database Syst Rev. 2021;8(8):CD009147.Google ScholarPubMed
Harris, JD, Griesser, MJ, Copelan, A, Jones, GL. Treatment of adhesive capsulitis with intra-articular hyaluronate: A systematic review. Int J Shoulder Surg. 2011;5(2):3137.CrossRefGoogle ScholarPubMed
Papalia, R, Tecame, A, Vadalà, G et al. The use of hyaluronic acid in the treatment of shoulder capsulitis: A systematic review. J Biol Regul Homeost Agents. 2017;31(4 Suppl 2):2332.Google ScholarPubMed
Lim, TK, Koh, KH, Shon, MS et al. Intra-articular injection of hyaluronate versus corticosteroid in adhesive capsulitis. Orthopedics. 2014;37(10):860865.CrossRefGoogle ScholarPubMed
Khenioui, H, Houvenagel, E, Catanzariti, JF et al. Usefulness of intra-articular botulinum toxin injections: A systematic review. Jt Bone Spine. 2016;83(2):149154.CrossRefGoogle ScholarPubMed
Singh, JA, Fitzgerald, PM. Botulinum toxin for shoulder pain. Cochrane Database Syst Rev. 2010;(9):CD008271.Google Scholar
Ozkan, K, Ozcekic, AN, Sarar, S et al. Suprascapular nerve block for the treatment of frozen shoulder. Saudi J Anaesth. 2012;6(1):5255.Google ScholarPubMed
Klç, Z, Filiz, MB, Çakr, T, Toraman, NF. Addition of suprascapular nerve block to a physical therapy program produces an extra benefit to adhesive capsulitis: A randomized controlled trial. Am J Phys Med Rehabil. 2015;94(10 Suppl 1):912920.CrossRefGoogle ScholarPubMed
Sonune, SP, Gaur, AK, Gupta, S. Comparative study of ultrasound guided supra-scapular nerve block versus intra-articular steroid injection in frozen shoulder. Int J Res Orthop. 2016;2(4):387.CrossRefGoogle Scholar
Jung, TW, Lee, SY, Min, SK, Lee, SM, Yoo, JC. Does Combining a Suprascapular Nerve Block With an Intra-articular Corticosteroid Injection Have an Additive Effect in the Treatment of Adhesive Capsulitis? A Comparison of Functional Outcomes After Short-term and Minimum 1-Year Follow-up. Orthop J Sports Med. 2019;7(7):2325967119859277.CrossRefGoogle ScholarPubMed
Kraal, T, Beimers, L, The, B et al. Manipulation under anaesthesia for frozen shoulders: Outdated technique or well-established quick fix? EFORT Open Rev. 2019;4(3):98109.CrossRefGoogle ScholarPubMed
Vastamäki, H, Varjonen, L, Vastamäki, M. Optimal time for manipulation of frozen shoulder may be between 6 and 9 months. Scand J Surg. 2015;104(4):260266.CrossRefGoogle ScholarPubMed
Jacobs, LG, Smith, MG, Khan, SA, Smith, K, Joshi, M. Manipulation or intra-articular steroids in the management of adhesive capsulitis of the shoulder? A prospective randomized trial. J Shoulder Elbow Surg. 2009;18(3):348353.CrossRefGoogle ScholarPubMed
Ranalletta, M, Rossi, LA, Zaidenberg, EE et al. Midterm outcomes after arthroscopic anteroinferior capsular release for the treatment of Idiophatic Adhesive Capsulitis. Arthrosc. 2017;33(3):503508.CrossRefGoogle ScholarPubMed
Barnes, CP, Lam, PH, Murrell, GA. Short-term outcomes after arthroscopic capsular release for adhesive capsulitis. J Shoulder Elbow Surg. 2016;25(9):256264.CrossRefGoogle ScholarPubMed
Tsai, MJ, Ho, WP, Chen, CH, Leu, TH, Chuang, TY. Arthroscopic extended rotator interval release for treating refractory adhesive capsulitis. J Orthop Surg (Hong Kong). 2017;25(1):2309499017692717.CrossRefGoogle ScholarPubMed
Mubark, IM, Ragab, AH, Nagi, AA, Motawea, BA. Evaluation of the results of management of frozen shoulder using the arthroscopic capsular release. Ortop Traumatol Rehabil. 2015;17(1):2128.CrossRefGoogle ScholarPubMed
Smith, CD, Hamer, P, Bunker, TD. Arthroscopic capsular release for idiopathic frozen shoulder with intra-articular injection and a controlled manipulation. Ann R Coll Surg Engl. 2014;96(1):5560.CrossRefGoogle Scholar

References

Jones, MR, Prabhakar, A, Viswanath, O et al. Thoracic outlet syndrome: A comprehensive review of pathophysiology, diagnosis, and treatment. Pain Ther. 2022;8:518. https://doi.org/10.6084/.CrossRefGoogle Scholar
Aljabri, B, Al-Omran, M. Surgical management of vascular thoracic outlet syndrome: A teaching hospital experience. Ann Vasc Dis. 2013;6(1):7479. https://pubmed.ncbi.nlm.nih.gov/23641288/.CrossRefGoogle ScholarPubMed
Laulan, J, Fouquet, B, Rodaix, C et al. Thoracic outlet syndrome: Definition, aetiological factors, diagnosis, management and occupational impact. J Occup Rehabil. 2011;21(3):366373. https://pubmed.ncbi.nlm.nih.gov/21193950/.CrossRefGoogle ScholarPubMed
Freischlag, J, Orion, K. Understanding thoracic outlet syndrome. Scientifica (Cairo). 2014;2014:1–6. https://pubmed.ncbi.nlm.nih.gov/25140278/.Google ScholarPubMed
Maru, S, Dosluoglu, H, Dryjski, M et al. Thoracic outlet syndrome in children and young adults. Eur J Vasc Endovasc Surg. 2009;38(5):560564. https://pubmed.ncbi.nlm.nih.gov/19703780/.CrossRefGoogle ScholarPubMed
Brooke, BS, Freischlag, JA. Contemporary management of thoracic outlet syndrome. Curr Opin Cardiol. 2010;25(6):535540. https://pubmed.ncbi.nlm.nih.gov/20838336/.CrossRefGoogle ScholarPubMed
Stewman, C, Vitanzo, PC, Harwood, MI. Neurologic thoracic outlet syndrome: Summarizing a complex history and evolution. Curr Sports Med Rep. 2014;13(2):100106. https://pubmed.ncbi.nlm.nih.gov/24614423/.CrossRefGoogle ScholarPubMed
Raptis, CA, Sridhar, S, Thompson, RW, Fowler, KJ, Bhalla, S. Imaging of the patient with thoracic outlet syndrome. Radiographics. 2016;36(4):9841000. https://pubmed.ncbi.nlm.nih.gov/27257767/.CrossRefGoogle ScholarPubMed
Ferrante, MA. The thoracic outlet syndromes. Muscle Nerve. 2012;45(6):780795. https://pubmed.ncbi.nlm.nih.gov/22581530/.CrossRefGoogle ScholarPubMed
Sanders, RJ, Hammond, SL, Rao, NM. Diagnosis of thoracic outlet syndrome. J Vasc Surg. 2007;46(3):601604. https://pubmed.ncbi.nlm.nih.gov/17826254/.CrossRefGoogle ScholarPubMed
Ibrahim, R, Dashkova, I, Williams, M et al. Paget-Schroetter syndrome in the absence of common predisposing factors: A case report. Thromb J. 2017;15(1):20. https://pubmed.ncbi.nlm.nih.gov/28781584/.CrossRefGoogle ScholarPubMed
Davis, GA, Knight, SR. Pancoast tumors. Neurosurg Clin N Am. 2008;19(4):545557. https://pubmed.ncbi.nlm.nih.gov/19010280/.CrossRefGoogle ScholarPubMed
Abdolrazaghi, H, Riyahi, A, Taghavi, M, Farshidmehr, P, Mohammadbeigi, A. Concomitant neurogenic and vascular thoracic outlet syndrome due to multiple exostoses. Ann Card Anaesth. 2018;21(1):7173. https://pubmed.ncbi.nlm.nih.gov/29336398/.Google ScholarPubMed
Cooke, RA. Thoracic outlet syndrome–aspects of diagnosis in the differential diagnosis of hand-arm vibration syndrome. Occup Med (Lond). 2003;53(5):331336. https://pubmed.ncbi.nlm.nih.gov/12890833/.CrossRefGoogle ScholarPubMed
Duwayri, YM, Emery, VB, Driskill, MR et al. Positional compression of the axillary artery causing upper extremity thrombosis and embolism in the elite overhead throwing athlete. J Vasc Surg. 2011;53(5):13291340. https://pubmed.ncbi.nlm.nih.gov/21276687/.CrossRefGoogle ScholarPubMed
Povlsen, S, Povlsen, B. Diagnosing thoracic outlet syndrome: Current approaches and future directions. Diagnostics (Basel, Switzerland). 2018;8(1):21. https://pubmed.ncbi.nlm.nih.gov/29558408/.Google ScholarPubMed
Huang, JH, Zager, EL, McGillicuddy, JE et al. Thoracic outlet syndrome. Neurosurg. 2004;55(4):897903. https://pubmed.ncbi.nlm.nih.gov/15458598/.CrossRefGoogle ScholarPubMed
Tsao, BE, Ferrante, MA, Wilbourn, AJ, Shields, RW. Electrodiagnostic features of true neurogenic thoracic outlet syndrome. Muscle Nerve. 2014;49(5):724727. https://pubmed.ncbi.nlm.nih.gov/24006176/.CrossRefGoogle ScholarPubMed
Kuhn, JE, Lebus, V GF, Bible, JE. Thoracic outlet syndrome. J Am Acad Orthop Surg. 2015;23(4):222232. https://pubmed.ncbi.nlm.nih.gov/25808686/.CrossRefGoogle ScholarPubMed
Demondion, X, Herbinet, P, Van Sint Jan, S et al. Imaging assessment of thoracic outlet syndrome. Radiographics. 2006;26(6):17351750. https://pubmed.ncbi.nlm.nih.gov/17102047/.CrossRefGoogle ScholarPubMed
Foley, JM, Finlayson, H, Travlos, A. A review of thoracic outlet syndrome and the possible role of botulinum toxin in the treatment of this syndrome. Toxins (Basel). 2012;4(11):12231235. https://pubmed.ncbi.nlm.nih.gov/23202313/.CrossRefGoogle ScholarPubMed
Vemuri, C, McLaughlin, LN, Abuirqeba, AA, Thompson, RW. Clinical presentation and management of arterial thoracic outlet syndrome. J Vasc Surg. 2017;65(5):14291439. https://pubmed.ncbi.nlm.nih.gov/28189360/.CrossRefGoogle ScholarPubMed
Burt, BM. Thoracic outlet syndrome for thoracic surgeons. J Thorac Cardiovasc Surg. 2018;156(3):13181323.e1. https://pubmed.ncbi.nlm.nih.gov/29628349/.CrossRefGoogle ScholarPubMed
Urschel, HC, Razzuk, MA. Upper plexus thoracic outlet syndrome: Optimal therapy. Ann Thorac Surg. 1997;63(4):935939. https://pubmed.ncbi.nlm.nih.gov/9124966/.CrossRefGoogle ScholarPubMed

References

Jordan, JM, Helmick, CG, Renner, JB et al. Prevalence of hip symptoms and radiographic and symptomatic hip osteoarthritis in African Americans and Caucasians: The Johnston County osteoarthritis project. J Rheumatol. 2009;36(4):809815.CrossRefGoogle ScholarPubMed
Long, H, Liu, Q, Yin, H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: Findings from the global burden of disease study 2019. Arthritis Rheumatol. 2022;74(7):11721183. doi: 10.1002/art.42089.CrossRefGoogle ScholarPubMed
Johnson, VL, Hunter, DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28(1):515.CrossRefGoogle ScholarPubMed
Loeser, RF. The role of aging in the development of osteoarthritis. Trans Am Clin Climatol Assoc. 2017;128:4454.Google ScholarPubMed
Katz, JN, Arant, KR, Loeser, RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA. 2021;325(6):568578.CrossRefGoogle ScholarPubMed
Kim, C, Linsenmeyer, KD, Vlad, SC et al. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: The Framingham osteoarthritis study. Arthritis Rheumatol. 2014;66(11):30133017.CrossRefGoogle Scholar
Spector, TD, MacGregor, AJ. Risk factors for osteoarthritis: Genetics. Osteoarthritis Cartilage. 2004;12(Suppl A):S39S44.CrossRefGoogle ScholarPubMed
Chen, D, Shen, J, Zhao, W et al. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044. doi: 10.1038/boneres.2016.44.CrossRefGoogle Scholar
Urits, I, Orhurhu, V, Powell, J et al. Minimally invasive therapies for osteoarthritic hip pain: A comprehensive review. Curr Pain Headache Rep. 2020;24(7):37. doi: 10.1007/s11916-020-00874-8.CrossRefGoogle ScholarPubMed
Bannuru, RR, Osani, MC, Vaysbrot, EE et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage. 2019;27(11):15781589.CrossRefGoogle ScholarPubMed
Robson, EK, Hodder, RK, Kamper, SJ et al. Effectiveness of weight-loss interventions for reducing pain and disability in people with common musculoskeletal disorders: A systematic review with meta-analysis. J Orthop Sports Phys Ther. 2020;50(6):319333.CrossRefGoogle ScholarPubMed
Daugaard, CL, Hangaard, S, Bartels, EM et al. The effects of weight loss on imaging outcomes in osteoarthritis of the hip or knee in people who are overweight or obese: A systematic review. Osteoarthritis Cartilage. 2020;28(1):1021.CrossRefGoogle ScholarPubMed
Gill, RS, Al-Adra, DP, Shi, X et al. The benefits of bariatric surgery in obese patients with hip and knee osteoarthritis: A systematic review. Obes Rev. 2011;12(12):10831089.CrossRefGoogle ScholarPubMed
Hurley, M, Dickson, K, Hallett, R et al. Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: A mixed methods review. Cochrane Database Syst Rev. 2018;4(4):CD010842.Google ScholarPubMed
Bartels, EM, Juhl, CB, Christensen, R et al. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst Rev. 2016;3:CD005523.Google ScholarPubMed
Fransen, M, McConnell, S, Hernandez-Molina, G, Reichenbach, S. Exercise for osteoarthritis of the hip. Cochrane Database Syst Rev. 2014;(4):CD007912. doi: 10.1002/14651858.CD007912.pub2.Google ScholarPubMed
Puljak, L, Marin, A, Vrdoljak, D et al. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5(5):CD009865.Google ScholarPubMed
Towheed, TE, Maxwell, L, Judd, MG et al. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006;(1):CD004257. doi: 10.1002/14651858.CD004257.pub2.Google ScholarPubMed
Toupin April, K, Bisaillon, J, Welch, V et al. Tramadol for osteoarthritis. Cochrane Database Syst Rev. 2019;5(5):CD005522.Google ScholarPubMed
da Costa, BR, Nüesch, E, Kasteler, R et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2014;(9):CD003115. doi: 10.1002/14651858.CD003115.pub4.Google ScholarPubMed
Towheed, TE, Maxwell, L, Anastassiades, TP et al. Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst Rev. 2005;(2):CD002946. doi: 10.1002/14651858.CD002946.pub2.Google ScholarPubMed
Singh, JA, Noorbaloochi, S, MacDonald, R, Maxwell, LJ. Chondroitin for osteoarthritis. Cochrane Database Syst Rev. 2015;1:CD005614.Google ScholarPubMed
Zhong, HM, Zhao, GF, Lin, T et al. Intra-articular steroid injection for patients with hip osteoarthritis: A systematic review and meta-analysis. Biomed Res Int. 2020;2020:6320154. doi: 10.1155/2020/6320154.CrossRefGoogle ScholarPubMed
McCabe, PS, Maricar, N, Parkes, MJ, Felson, DT, O’Neill, TW. The efficacy of intra-articular steroids in hip osteoarthritis: A systematic review. Osteoarthritis Cartilage. 2016;24(9):15091517.CrossRefGoogle ScholarPubMed
Kanthawang, T, Lee, A, Baal, JD et al. Predicting outcomes in patients undergoing intra-articular corticosteroid hip injections. Skeletal Radiol. 2021;50(7):13471357.CrossRefGoogle ScholarPubMed
Kruse, DW. Intraarticular cortisone injection for osteoarthritis of the hip. Is it effective? Is it safe? Curr Rev Musculoskelet Med. 2008;1(3–4):227233.CrossRefGoogle ScholarPubMed
Ravi, B, Escott, BG, Wasserstein, D et al. Intraarticular hip injection and early revision surgery following total hip arthroplasty: A retrospective cohort study. Arthritis Rheumatol. 2015;67(1):162168.CrossRefGoogle ScholarPubMed
Schairer, WW, Nwachukwu, BU, Mayman, DJ, Lyman, S, Jerabek, SA. Preoperative hip injections increase the rate of periprosthetic infection after total hip arthroplasty. J Arthroplasty. 2016;31(Suppl 9):166169.CrossRefGoogle ScholarPubMed
Chambers, AW, Lacy, KW, Liow, MHL et al. Multiple hip intra-articular steroid injections increase risk of periprosthetic joint infection compared with single injections. J Arthroplast. 2017;32(6):19801983.CrossRefGoogle ScholarPubMed
Ebad Ali, SM, Farooqui, SF, Sahito, B et al. Clinical outcomes of intra-articular high molecular weight hyaluronic acid injection for hip osteoarthritis: A systematic review and meta-analysis. J Ayub Med Coll Abbottabad. 2021;33(2):315321.Google ScholarPubMed
Gazendam, A, Ekhtiari, S, Bozzo, A, Phillips, M, Bhandari, M. Intra-articular saline injection is as effective as corticosteroids, platelet-rich plasma and hyaluronic acid for hip osteoarthritis pain: A systematic review and network meta-analysis of randomised controlled trials. Br J Sports Med. 2021;55(5):256261.CrossRefGoogle Scholar
Belk, JW, Houck, DA, Littlefield, CP et al. Platelet-rich plasma versus hyaluronic acid for hip osteoarthritis yields similarly beneficial short-term clinical outcomes: A systematic review and meta-analysis of level I and II randomized controlled trials. Arthroscopy. 2022;38(6):20352046.CrossRefGoogle Scholar
Vilabril, F, Rocha-Melo, J, Gonçalves, JV, Vilaça-Costa, J, Brito, I. Hip osteoarthritis treatment with intra-articular injections: Hyaluronic acid versus glucocorticoid: A systematic review. Acta Reumatol Port. 2020;45(2):127136.Google ScholarPubMed
Mardones, R, Jofré, CM, Tobar, L, Minguell, JJ. Mesenchymal stem cell therapy in the treatment of hip osteoarthritis. J Hip Preserv Surg. 2017;4(2):159163.CrossRefGoogle ScholarPubMed
McIntyre, JA, Jones, IA, Han, B, Vangsness, CT. Intra-articular Mesenchymal stem cell therapy for the human joint: A systematic review. Am J Sports Med. 2018;46(14):35503563.CrossRefGoogle ScholarPubMed
Rodriguez-Fontan, F, Piuzzi, NS, Kraeutler, MJ, Pascual-Garrido, C. Early clinical outcomes of intra-articular injections of bone marrow aspirate concentrate for the treatment of early osteoarthritis of the hip and knee: A cohort study. PM&R. 2018;10(12):13531359.Google ScholarPubMed
Darrow, M, Shaw, B, Darrow, B, Wisz, S. Short-term outcomes of treatment of hip osteoarthritis with 4 bone marrow concentrate injections: A case series. Clin Med Insights Case Rep. 2018;11:14.CrossRefGoogle ScholarPubMed

References

Dillon, CF, Rasch, EK, Gu, Q, Hirsch, R. Prevalence of knee osteoarthritis in the United States: Arthritis data from the Third National Health and Nutrition Examination Survey 1991–94. J Rheumatol. 2006;33(11):22712279.Google ScholarPubMed
Federal Interagency Forum on Aging-Related Statistics. Older Americans 2016: Key indicators of well-being. US Government Printing Office; 2016.Google Scholar
Felson, DT, Niu, J, Clancy, M et al. Effect of recreational physical activities on the development of knee osteoarthritis in older adults of different weights: The Framingham study. Arthritis Rheum. 2007;57:612.CrossRefGoogle ScholarPubMed
Barbour, KE, Hootman, JM, Helmick, CG et al. Meeting physical activity guidelines and the risk of incident knee osteoarthritis: A population-based prospective cohort study. Arthritis Care Res (Hoboken). 2014;66:139146.CrossRefGoogle ScholarPubMed
Mora, JC, Przkora, R, Cruz-Almeida, Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J Pain Res. 2018;11:21892196.CrossRefGoogle ScholarPubMed
Heidari, B. Knee osteoarthritis diagnosis, treatment and associated factors of progression: Part II. Caspian J Intern Med. 2011;2(3):249255.Google ScholarPubMed
Cui, A, Li, H, Wang, D et al. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020;29–30:100587. doi: 10.1016/j.eclinm.2020.100587.CrossRefGoogle ScholarPubMed
Chen, D, Shen, J, Zhao, W et al. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044. doi: 10.1038/boneres.2016.44.CrossRefGoogle Scholar
Zhang, W, Doherty, M, Peat, G et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010;69(3):483489.CrossRefGoogle ScholarPubMed
Webb, EJ, Osmotherly, PG, Baines, SK. Effect of dietary weight loss and macronutrient intake on body composition and physical function in adults with knee osteoarthritis: A systematic review. J Nutr Gerontol Geriatr. 2022;41(2):103125.CrossRefGoogle ScholarPubMed
Robson, EK, Hodder, RK, Kamper, SJ et al. Effectiveness of weight-loss interventions for reducing pain and disability in people with common musculoskeletal disorders: A systematic review with meta-analysis. J Orthop Sports Phys Ther. 2020;50(6):319333.CrossRefGoogle ScholarPubMed
Landsmeer, MLA, de Vos, BC, van der Plas, P et al. Effect of weight change on progression of knee OA structural features assessed by MRI in overweight and obese women. Osteoarthritis Cartilage. 2018;26(12):16661674.CrossRefGoogle ScholarPubMed
Goh, SL, Persson, MSM, Stocks, J et al. Efficacy and potential determinants of exercise therapy in knee and hip osteoarthritis: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(5):356365.CrossRefGoogle ScholarPubMed
Raposo, F, Ramos, M, Lúcia Cruz, A. Effects of exercise on knee osteoarthritis: A systematic review. Musculoskeletal Care. 2021;19(4):399435.CrossRefGoogle ScholarPubMed
Fransen, M, McConnell, S, Harmer, AR et al. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev. 2015;1:CD004376.Google ScholarPubMed
Puljak, L, Marin, A, Vrdoljak, D et al. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5(5):CD009865.Google ScholarPubMed
Towheed, TE, Maxwell, L, Judd, MG et al. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006;(1):CD004257. doi: 10.1002/14651858.CD004257.pub2.Google ScholarPubMed
Toupin April, K, Bisaillon, J, Welch, V et al. Tramadol for osteoarthritis. Cochrane Database Syst Rev. 2019;5(5):CD005522.Google ScholarPubMed
da Costa, BR, Nüesch, E, Kasteler, R et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2014;(9):CD003115. doi: 10.1002/14651858.CD003115.pub4.Google ScholarPubMed
Towheed, TE, Maxwell, L, Anastassiades, TP et al. Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst Rev. 2005;(2):CD002946. doi: 10.1002/14651858.CD002946.pub2.Google ScholarPubMed
Singh, JA, Noorbaloochi, S, MacDonald, R, Maxwell, LJ. Chondroitin for osteoarthritis. Cochrane Database Syst Rev. 2015;1(1):CD005614.Google ScholarPubMed
Jüni, P, Hari, R, Rutjes, AW et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. 2015;(10):CD005328. doi: 10.1002/14651858.CD005328.pub3.Google ScholarPubMed
McAlindon, TE, LaValley, MP, Harvey, WF et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: A randomized clinical trial. JAMA. 2017;317:19671975.CrossRefGoogle ScholarPubMed
McLarnon, M, Heron, N. Intra-articular platelet-rich plasma injections versus intra-articular corticosteroid injections for symptomatic management of knee osteoarthritis: Systematic review and meta-analysis. BMC Musculoskelet Disord. 2021;22(1):550. doi: 10.1186/s12891-021-04308-3.CrossRefGoogle ScholarPubMed
Meheux, CJ, McCulloch, PC, Lintner, DM, Varner, KE, Harris, JD. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: A systematic review. Arthroscopy. 2016;32(3):495505.CrossRefGoogle ScholarPubMed
Bellamy, N, Campbell, J, Robinson, V et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;(2):CD005321. doi: 10.1002/14651858.CD005321.pub2.Google ScholarPubMed
Richette, P, Chevalier, X, Ea, HK et al. Hyaluronan for knee osteoarthritis: An updated meta-analysis of trials with low risk of bias. RMD Open. 2015;1(1):e000071.CrossRefGoogle ScholarPubMed
Xing, D, Wang, B, Liu, Q et al. Intra-articular hyaluronic acid in treating knee osteoarthritis: A PRISMA-compliant systematic review of overlapping meta-analysis. Sci Rep. 2016;6:32790. doi: 10.1038/srep32790.CrossRefGoogle ScholarPubMed
Peck, J, Slovek, A, Miro, P et al. A comprehensive review of viscosupplementation in osteoarthritis of the knee. Orthop Rev (Pavia). 2021;13(2):25549. doi: 10.52965/001c.25549.CrossRefGoogle ScholarPubMed
Di Matteo B, Vandenbulcke F, Vitale ND et al. Minimally manipulated mesenchymal stem cells for the treatment of knee osteoarthritis: A systematic review of clinical evidence. Stem Cells Int. 2019;2019:1735242. doi: 10.1155/2019/1735242.CrossRefGoogle Scholar

References

Thomas, MJ, Roddy, E, Zhang, W et al. The population prevalence of foot and ankle pain in middle and old age: A systematic review. Pain. 2011;152(12):28702880.CrossRefGoogle ScholarPubMed
Menz, HB, Dufour, AB, Casey, VA et al. Foot pain and mobility limitations in older adults: The Framingham foot study. J Gerontol A Biol Sci Med Sci. 2013;68(10):12811285.CrossRefGoogle ScholarPubMed
Belatti, DA, Phisitkul, P. Economic burden of foot and ankle surgery in the US Medicare population. Foot Ankle Int. 2014;35(4):334340.CrossRefGoogle ScholarPubMed
Werner, RA, Gell, N, Hartigan, A, Wiggermann, N, Keyserling, WM. Risk factors for foot and ankle disorders among assembly plant workers. Am J Ind Med. 2010;53(12):12331239.CrossRefGoogle ScholarPubMed
Oh-Park, M, Kirschner, J, Abdelshahed, D, Kim, DDJ. Painful foot disorders in the geriatric population: A narrative review. Am J Phys Med Rehabil. 2019;98(9):811819.CrossRefGoogle ScholarPubMed
Yong, RJ, Mullins, PM, Bhattacharyya, N. Prevalence of chronic pain among adults in the United States. Pain. 2022;163(2):e328e332.CrossRefGoogle ScholarPubMed
Gribble, PA. Evaluating and differentiating ankle instability. J Athl Train. 2019;54(6):617627.CrossRefGoogle ScholarPubMed
Miklovic, TM, Donovan, L, Protzuk, OA, Kang, MS, Feger, MA. Acute lateral ankle sprain to chronic ankle instability: A pathway of dysfunction. Phys Sportsmed. 2018;46(1):116122.CrossRefGoogle ScholarPubMed
Czajka, CM, Tran, E, Cai, AN, DiPreta, JA. Ankle sprains and instability. Med Clin North Am. 2014;98(2):313329.CrossRefGoogle ScholarPubMed
Urits, I, Smoots, D, Franscioni, H et al. Injection techniques for common chronic pain conditions of the foot: A comprehensive review. Pain Ther. 2020;9(1):145160.CrossRefGoogle ScholarPubMed
van der Merwe, C, Shultz, SP, Colborne, GR, Fink, PW. Foot muscle strengthening and lower limb injury prevention. Res Q Exerc Sport. 2021;92(3):380387.CrossRefGoogle ScholarPubMed
Urits, I, Hasegawa, M, Orhurhu, V et al. Minimally invasive treatment of chronic ankle instability: A comprehensive review. Curr Pain Headache Rep. 2020;24(3): 1040–1048. doi: 10.1007/s00167-016-4041-1.CrossRefGoogle ScholarPubMed
Khlopas, H, Khlopas, A, Samuel, LT et al. Current concepts in osteoarthritis of the ankle: Review. Surg Technol Int. 2019;35:280294.Google ScholarPubMed
Pietramaggiori, G, Sapino, G, De Santis, G, Bassetto, F, Scherer, S. Chronic knee and ankle pain treatment through selective microsurgical approaches: A minimally invasive option in the treatment algorithm for refractory lower limb pain. J Reconstr Microsurg. 2021;37(3):234241.Google ScholarPubMed
Arroyo-Hernández, M, Mellado-Romero, M, Páramo-Díaz, P, García-Lamas, L, Vilà-Rico, J. Chronic ankle instability: Arthroscopic anatomical repair. Rev Esp Cir Ortop Traumatol. 2017;61(2):104110.Google ScholarPubMed
Di Caprio, F, Meringolo, R, Shehab Eddine, M, Ponziani, L. Morton’s interdigital neuroma of the foot: A literature review. Foot Ankle Surg. 2018;24(2):9298.CrossRefGoogle ScholarPubMed
Longo, UG, Ronga, M, Maffulli, N. Achilles tendinopathy. Sports Med Arthrosc Rev. 2018;26(1):1630.CrossRefGoogle ScholarPubMed
McSweeney, SC, Cichero, M. Tarsal tunnel syndrome: A narrative literature review. Foot (Edinb). 2015;25(4):244250.CrossRefGoogle ScholarPubMed
Kuo, CF, Grainge, MJ, Zhang, W, Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649662.CrossRefGoogle ScholarPubMed
Evans, PL, Prior, JA, Belcher, J et al. Obesity, hypertension and diuretic use as risk factors for incident gout: A systematic review and meta-analysis of cohort studies. Arthritis Res Ther. 2018;20(1):136. doi: 10.1186/s13075-018-1612-1.CrossRefGoogle Scholar
Al-Mohrej, OA, Al-Kenani, NS. Chronic ankle instability: Current perspectives. Avicenna J Med. 2016;6(4):103108.Google ScholarPubMed
Gougoulias, N, Lampridis, V, Sakellariou, A. Morton’s interdigital neuroma: Instructional review. EFORT Open Rev. 2019;4(1):1424.CrossRefGoogle ScholarPubMed
Kader, D, Saxena, A, Movin, T, Maffulli, N. Achilles tendinopathy: Some aspects of basic science and clinical management. Br J Sports Med. 2002;36(4):239249.CrossRefGoogle ScholarPubMed
Ragab, G, Elshahaly, M, Bardin, T. Gout: An old disease in new perspective: A review. J Adv Res. 2017;8(5):495511.CrossRefGoogle ScholarPubMed
Paterson, KL, Gates, L. Clinical assessment and management of foot and ankle osteoarthritis: A review of current evidence and focus on pharmacological treatment. Drugs Aging. 2019;36(3):203211.CrossRefGoogle ScholarPubMed
Aletaha, D, Neogi, T, Silman, AJ et al. Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):25692581.CrossRefGoogle ScholarPubMed
Gribble, PA, Delahunt, E, Bleakley, CM et al. Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the International Ankle Consortium. J Athl Train. 2014;49(1):121127.CrossRefGoogle ScholarPubMed
Weinfeld, SB. Achilles tendon disorders. Med Clin North Am. 2014;98(2):331338.CrossRefGoogle ScholarPubMed
Zellers, JA, Bley, BC, Pohlig, RT, Alghamdi, NH, Silbernagel, KG. Frequency of pathology on diagnostic ultrasound and relationship to patient demographics in individuals with insertional Achilles tendinopathy. Int J Sports Phys Ther. 2019;14(5):761769.CrossRefGoogle ScholarPubMed
Antoniadis, G, Scheglmann, K. Posterior tarsal tunnel syndrome diagnosis and treatment. Dtsch Arztebl. 2008;105(45):776781.Google ScholarPubMed
Rinkel, WD, Cabezas, MC, Van Neck, JW et al. Validity of the Tinel sign and prevalence of tibial nerve entrapment at the tarsal tunnel in both diabetic and nondiabetic subjects: A cross-sectional study. Plast Reconstr Surg. 2018;142(5):12581266.CrossRefGoogle ScholarPubMed
Roddy, E, Thomas, MJ, Marshall, M et al. The population prevalence of symptomatic radiographic foot osteoarthritis in community-dwelling older adults: Cross-sectional findings from the clinical assessment study of the foot. Ann Rheum Dis. 2015;74(1):156163.CrossRefGoogle ScholarPubMed
Simonsen, MB, Hørslev-Petersen, K, Cöster, MC, Jensen, C, Bremander, A. Foot and ankle problems in patients with rheumatoid arthritis in 2019: Still an important issue. ACR Open Rheumatol. 2021;3(6):396402.CrossRefGoogle ScholarPubMed
Heidari, B. Rheumatoid arthritis: Early diagnosis and treatment outcomes. Caspian J Intern Med. 2011;2(1):161170.Google ScholarPubMed
Gerstner Garces, JB. Chronic ankle instability. Foot Ankle Clin. 2012;17(3):389398.CrossRefGoogle ScholarPubMed
Khan, M, Shanmugaraj, A, Prada, C et al. The role of hyaluronic acid for soft tissue indications: A systematic review and meta-analysis. Sports Health. 2022;15(1):8696. doi: 10.1177/19417381211073316. .CrossRefGoogle ScholarPubMed
Petrella, MJ, Coglian;o, A, Petrella, RJ. Original research: Long-term efficacy and safety of periarticular hyaluronic acid in acute ankle sprain. Phys Sportsmed. 2009;37:6470.CrossRefGoogle ScholarPubMed
Vannini, F, Di Matteo, B, Filardo, G. Platelet-rich plasma to treat ankle cartilage pathology – from translational potential to clinical evidence: A systematic review. J Exp Orthop. 2015;2(1):2. doi: 10.1186/s40634-015-0019-z.CrossRefGoogle ScholarPubMed
Cruz-Díaz, D, Lomas Vega, R, Osuna-Pérez, MC, Hita-Contreras, F, Martínez-Amat, A. Effects of joint mobilization on chronic ankle instability: A randomized controlled trial. Disabil Rehabil. 2015;37(7):601610.CrossRefGoogle ScholarPubMed
Cain, MS, Ban, RJ, Chen, YP et al. Four-week ankle-rehabilitation programs in adolescent athletes with chronic ankle instability. J Athl Train. 2020;55(8):801810.CrossRefGoogle ScholarPubMed
Anguish, B, Sandrey, MA. Two 4-week balance-training programs for chronic ankle instability. J Athl Train. 2018;53(7):662671.CrossRefGoogle ScholarPubMed
Chang, SH, Morris, BL, Saengsin, J et al. Diagnosis and treatment of chronic lateral ankle instability: Review of our biomechanical evidence. J Am Acad Orthop Surg. 2021;29(1):316.CrossRefGoogle ScholarPubMed
Matthews, BG, Hurn, SE, Harding, MP, Henry, RA, Ware, RS. The effectiveness of non-surgical interventions for common plantar digital compressive neuropathy (Morton’s neuroma): A systematic review and meta-analysis. J Foot Ankle Res. 2019;12:12. doi: 10.1186/s13047-019-0320-7.CrossRefGoogle ScholarPubMed
Santos, D, Morrison, G, Coda, A. Sclerosing alcohol injections for the management of intermetatarsal neuromas: A systematic review. Foot (Edinb). 2018;35:3647.CrossRefGoogle ScholarPubMed
Campbell, CM, Diamond, E, Schmidt, WK et al. A randomized, double-blind, placebo-controlled trial of injected capsaicin for pain in Morton’s neuroma. Pain. 2016;157(6):12971304.CrossRefGoogle ScholarPubMed
Lee, K, Hwang, IY, Ryu, CH, Lee, JW, Kang, SW. Ultrasound-guided hyaluronic acid injection for the management of Morton’s neuroma. Foot Ankle Int. 2018;39(2):201204.CrossRefGoogle ScholarPubMed
Zhang, YJ, Xu, SZ, Gu, PC et al. Is platelet-rich plasma injection effective for chronic Achilles tendinopathy? A meta-analysis. Clin Orthop Relat Res. 2018;476(8):16331641.CrossRefGoogle ScholarPubMed
Chen, X, Jones, IA, Park, C, Vangsness, CT Jr. The efficacy of platelet-rich plasma on tendon and ligament healing: A systematic review and meta-analysis with bias assessment. Am J Sports Med. 2018;46(8):20202032.CrossRefGoogle ScholarPubMed
Yelland, MJ, Sweeting, KR, Lyftogt, JA et al. Prolotherapy injections and eccentric loading exercises for painful Achilles tendinosis: A randomised trial. Br J Sports Med. 2011;45(5):421428.CrossRefGoogle ScholarPubMed
Ferkel, E, Davis, WH, Ellington, JK. Entrapment neuropathies of the foot and ankle. Clin Sports Med. 2015;34(4):791801.CrossRefGoogle ScholarPubMed
Tu, P. Heel pain: Diagnosis and management. Am Fam Physician. 2018;97(2):8693.Google ScholarPubMed
Choo, YJ, Park, CH, Chang, MC. Rearfoot disorders and conservative treatment: A narrative review. Ann Palliat Med. 2020;9(5):35463552.CrossRefGoogle ScholarPubMed
Vij, N, Kaley, HN, Robinson, CL et al. Clinical results following conservative management of tarsal tunnel syndrome compared with surgical treatment: A systematic review. Orthop Rev (Pavia). 2022;14(3):37539. doi: 10.52965/001c.37539.CrossRefGoogle ScholarPubMed
Kang, MH, Moon, KW, Jeon, YH, Cho, SW. Sonography of the first metatarsophalangeal joint and sonographically guided intraarticular injection of corticosteroid in acute gout attack. J Clin Ultrasound. 2015;43(3):179186.CrossRefGoogle ScholarPubMed
Fernández, C, Noguera, R, González, JA, Pascual, E. Treatment of acute attacks of gout with a small dose of intraarticular triamcinolone acetonide. J Rheumatol. 1999;26(10):22852286.Google ScholarPubMed
Wechalekar, MD, Vinik, O, Moi, JH et al. The efficacy and safety of treatments for acute gout: Results from a series of systematic literature reviews including Cochrane reviews on intraarticular glucocorticoids, colchicine, nonsteroidal antiinflammatory drugs, and interleukin-1 inhibitors. J Rheumatol Suppl. 2014;92:1525.CrossRefGoogle ScholarPubMed
Richette, P, Doherty, M, Pascual, E et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76(1):2942.CrossRefGoogle ScholarPubMed
Wechalekar, MD, Vinik, O, Schlesinger, N, Buchbinder, R. Intra-articular glucocorticoids for acute gout. Cochrane Database Syst Rev. 2013;(4):CD009920. doi: 10.1002/14651858.CD009920.pub2.Google ScholarPubMed
Roddy, E, Menz, HB. Foot osteoarthritis: Latest evidence and developments. Therap Adv Musculoskelet Dis. 2018;10:91103.CrossRefGoogle ScholarPubMed
Drakonaki, EE, Kho, JSB, Sharp, RJ, Ostlere, SJ. Efficacy of ultrasound-guided steroid injections for pain management of midfoot joint degenerative disease. Skelet Radiol. 2011;40(8):10011006.CrossRefGoogle ScholarPubMed
Protheroe, D, Gadgil, A. Guided intra-articular corticosteroid injections in the midfoot. Foot Ankle Int. 2018;39(8):10011004.CrossRefGoogle ScholarPubMed
Grice, J, Marsland, D, Smith, G, Calder, J. Efficacy of foot and ankle corticosteroid injections. Foot Ankle Int. 2017;38(1):813.CrossRefGoogle ScholarPubMed
Pons, M, Alvarez, F, Solana, J, Viladot, R, Varela, L. Sodium hyaluronate in the treatment of hallux rigidus. A single-blind, randomized study. Foot ankle Int. 2007;28(1):3842.CrossRefGoogle ScholarPubMed
Vannabouathong, C, Del Fabbro, G, Sales, B et al. Intra-articular injections in the treatment of symptoms from ankle arthritis: A systematic review. Foot Ankle Int. 2018;39(10):11411150.CrossRefGoogle ScholarPubMed
Fukawa, T, Yamaguchi, S, Akatsu, Y et al. Safety and efficacy of intra-articular injection of platelet-rich plasma in patients with ankle osteoarthritis. Foot Ankle Int. 2017;38(6):596604.CrossRefGoogle ScholarPubMed
Repetto, I, Biti, B, Cerruti, P, Trentini, R, Felli, L. Conservative treatment of ankle osteoarthritis: Can platelet-rich plasma effectively postpone surgery? J Foot Ankle Surg. 2017;56(2):362365.CrossRefGoogle ScholarPubMed
Emadedin, M, Ghorbani Liastani, M, Fazeli, R et al. Long-term follow-up of intra-articular injection of autologous mesenchymal stem cells in patients with knee, ankle, or hip osteoarthritis. Arch Iran Med. 2015;18(6):336344.Google ScholarPubMed
Lopes, RV, Furtado, RNV, Parmigiani, L et al. Accuracy of intra-articular injections in peripheral joints performed blindly in patients with rheumatoid arthritis. Rheumatology. 2008;47(12):17921794.CrossRefGoogle ScholarPubMed
Cunnington, J, Marshall, N, Hide, G et al. A randomized, double-blind, controlled study of ultrasound-guided corticosteroid injection into the joint of patients with inflammatory arthritis. Arthritis Rheum. 2010;62(7):18621869.CrossRefGoogle ScholarPubMed
Furtado, RNV, Machado, FS, da Luz, KR et al. Intra-articular injection with triamcinolone hexacetonide in patients with rheumatoid arthritis: Prospective assessment of goniometry and joint inflammation parameters. Rev Bras Reumatol (English Ed.). 2017;57(2):115121.CrossRefGoogle ScholarPubMed
Mortada, MA, Abdelwhab, SM, Elgawish, MH. Intra-articular methotrexate versus corticosteroid injections in medium-sized joints of rheumatoid arthritis patients: An intervention study. Clin Rheumatol. 2018;37(2):331337.CrossRefGoogle ScholarPubMed

References

Cutts, S, Obi, N, Pasapula, C, Chan, W. Plantar fasciitis. Ann R Coll Surg Engl. 2012;94(8):539542.CrossRefGoogle ScholarPubMed
Riddle, DL, Schappert, SM. Volume of ambulatory care visits and patterns of care for patients diagnosed with plantar fasciitis: A national study of medical doctors. Foot Ankle Int. 2004;25(5):303310.CrossRefGoogle ScholarPubMed
Tong, KB, Furia, J. Economic burden of plantar fasciitis treatment in the United States. Am J Orthop (Belle Mead NJ). 2010;39(5):227231.Google ScholarPubMed
Thompson, JV, Saini, SS, Reb, CW, Daniel, JN. Diagnosis and management of plantar fasciitis. J Am Osteopath Assoc. 2014;114(12):900906.Google ScholarPubMed
Muth, CC. Plantar fasciitis. JAMA. 2017;318(4):400. doi: 10.1001/jama.2017.5806.CrossRefGoogle ScholarPubMed
Carek, PJ, Edenfield, KM, Michaudet, C, Nicolette, GW. Foot and ankle conditions: Plantar fasciitis. FP Essent. 2018;465:1117.Google ScholarPubMed
Nahin, RL. Prevalence and pharmaceutical treatment of plantar fasciitis in United States adults. J Pain. 2018;19(8):885896.CrossRefGoogle ScholarPubMed
Thing, J, Maruthappu, M, Rogers, J. Diagnosis and management of plantar fasciitis in primary care. Br J Gen Pract. 2012;62(601):443444. doi: 10.3399/bjgp12X653769.CrossRefGoogle ScholarPubMed
Miller, LE, Latt, DL. Chronic plantar fasciitis is mediated by local hemodynamics: Implications for emerging therapies. North Am J Med Sci. 2015;7(1):15.CrossRefGoogle ScholarPubMed
Johnson, RE, Haas, K, Lindow, K, Shields, R. Plantar fasciitis: What is the diagnosis and treatment? Orthop Nurs. 2014;33(4):198204.CrossRefGoogle ScholarPubMed
Bolgla, LA, Malone, TR. Plantar fasciitis and the Windlass mechanism: A biomechanical link to clinical practice. J Athl Train. 2004;39(1):7782.Google ScholarPubMed
De Garceau, D, Dean, D, Requejo, SM, Thordarson, DB. The association between diagnosis of plantar fasciitis and Windlass test results. Foot Ankle Int. 2003;24(3):251255.CrossRefGoogle ScholarPubMed
Sabir, N, Demirlenk, S, Yagci, B, Karabulut, N, Cubukcu, S. Clinical utility of sonography in diagnosing plantar fasciitis. J Ultrasound Med. 2005;24(8):10411048.CrossRefGoogle ScholarPubMed
Osborne, HR, Breidahl, WH, Allison, GT. Critical differences in lateral X-rays with and without a diagnosis of plantar fasciitis. J Sci Med Sport. 2006;9(3):231237.CrossRefGoogle ScholarPubMed
Boules, M, Batayyah, E, Froylich, D et al. Effect of surgical weight loss on plantar fasciitis and health-care use. J Am Podiatr Med Assoc. 2018;108(6):442448.CrossRefGoogle ScholarPubMed
Sharma, NK, Loudon, JK. Static progressive stretch brace as a treatment of pain and functional limitations associated with plantar fasciitis: A pilot study. Foot Ankle Spec. 2010;3(3):117124.CrossRefGoogle ScholarPubMed
Boonchum, H, Bovonsunthonchai, S, Sinsurin, K, Kunanusornchai, W. Effect of a home-based stretching exercise on multi-segmental foot motion and clinical outcomes in patients with plantar fasciitis. J Musculoskelet Neuronal Interact. 2020;20(3):411420.Google ScholarPubMed
Siriphorn, A, Eksakulkla, S. Calf stretching and plantar fascia-specific stretching for plantar fasciitis: A systematic review and meta-analysis. J Bodyw Mov Ther. 2020;24(4):222232.CrossRefGoogle ScholarPubMed
Kamonseki, DH, Gonçalves, GA, Yi, LC, Júnior, IL. Effect of stretching with and without muscle strengthening exercises for the foot and hip in patients with plantar fasciitis: A randomized controlled single-blind clinical trial. Man Ther. 2016;23:7682.CrossRefGoogle ScholarPubMed
Digiovanni, BF, Nawoczenski, DA, Malay, DP et al. Plantar fascia-specific stretching exercise improves outcomes in patients with chronic plantar fasciitis: A prospective clinical trial with two-year follow-up. J Bone Joint Surg Am. 2006;88(8):17751781.CrossRefGoogle ScholarPubMed
Huffer, D, Hing, W, Newton, R, Clair, M. Strength training for plantar fasciitis and the intrinsic foot musculature: A systematic review. Phys Ther Sport. 2017;24:4452.CrossRefGoogle ScholarPubMed
Rathleff, MS, Mølgaard, CM, Fredberg, U et al. High-load strength training improves outcome in patients with plantar fasciitis: A randomized controlled trial with 12-month follow-up. Scand J Med Sci Sports. 2015;25(3):292300.CrossRefGoogle ScholarPubMed
Hawke, F, Burns, J, Radford, JA, du Toit, V. Custom-made foot orthoses for the treatment of foot pain. Cochrane Database Syst Rev. 2008;(3):CD006801. doi: 10.1002/14651858.CD006801.pub2.Google ScholarPubMed
Bishop, C, Thewlis, D, Hillier, S. Custom foot orthoses improve first-step pain in individuals with unilateral plantar fasciopathy: A pragmatic randomised controlled trial. BMC Musculoskelet Disord. 2018;19(1):222. doi: 10.1186/s12891-018-2131-6.CrossRefGoogle ScholarPubMed
Wrobel, JS, Fleischer, AE, Crews, RT, Jarrett, B, Najafi, B. A randomized controlled trial of custom foot orthoses for the treatment of plantar heel pain. J Am Podiatr Med Assoc. 2015;105(4):281294.CrossRefGoogle ScholarPubMed
Goff, JD, Crawford, R. Diagnosis and treatment of plantar fasciitis. Am Fam Physician. 2011;84(6):676682.Google ScholarPubMed
Donley, BG, Moore, T, Sferra, J, Gozdanovic, J, Smith, R. The efficacy of oral nonsteroidal anti-inflammatory medication (NSAID) in the treatment of plantar fasciitis: A randomized, prospective, placebo-controlled study. Foot Ankle Int. 2007;28(1):2023.CrossRefGoogle ScholarPubMed
David, JA, Sankarapandian, V, Christopher, PR, Chatterjee, A, Macaden, AS. Injected corticosteroids for treating plantar heel pain in adults. Cochrane Database Syst Rev. 2017;6(6):CD009348.Google ScholarPubMed
Tsai, WC, Hsu, CC, Chen, CP et al. Plantar fasciitis treated with local steroid injection: Comparison between sonographic and palpation guidance. J Clin Ultrasound. 2006;34(1):1216.CrossRefGoogle ScholarPubMed
Sellman, JR. Plantar fascia rupture associated with corticosteroid injection. Foot Ankle Int. 1994;15(7):376381.CrossRefGoogle ScholarPubMed
Mahindra, P, Yamin, M, Selhi, HS, Singla, S, Soni, A. Chronic plantar fasciitis: Effect of platelet-rich plasma, corticosteroid, and placebo. Orthopedics. 2016;39(2):285289.CrossRefGoogle ScholarPubMed
Singh, P, Madanipour, S, Bhamra, JS, Gill, I. A systematic review and meta-analysis of platelet-rich plasma versus corticosteroid injections for plantar fasciopathy. Int Orthop. 2017;41(6):11691181.CrossRefGoogle ScholarPubMed
Kamel, M, Kotob, H. High frequency ultrasonographic findings in plantar fasciitis and assessment of local steroid injection. J Rheumatol. 2000;27(9):21392141.Google ScholarPubMed
Monto, RR. Platelet-rich plasma efficacy versus corticosteroid injection treatment for chronic severe plantar fasciitis. Foot Ankle Int. 2014;35(4):313318.CrossRefGoogle ScholarPubMed
Shetty, SH, Dhond, A, Arora, M, Deore, S. Platelet-rich plasma has better long-term results than corticosteroids or placebo for chronic plantar fasciitis: Randomized control trial. J Foot Ankle Surg. 2019;58(1):4246.CrossRefGoogle ScholarPubMed
Jain, K, Murphy, PN, Clough, TM. Platelet rich plasma versus corticosteroid injection for plantar fasciitis: A comparative study. Foot (Edinb). 2015;25(4):235237.CrossRefGoogle ScholarPubMed
Acosta-Olivo, C, Elizondo-Rodriguez, J, Lopez-Cavazos, R et al. Plantar fasciitis: A comparison of treatment with intralesional steroids versus platelet-rich plasma a randomized, blinded study. J Am Podiatr Med Assoc. 2017;107(6):490496.CrossRefGoogle ScholarPubMed
Jain, SK, Suprashant, K, Kumar, S, Yadav, A, Kearns, SR. Comparison of plantar fasciitis injected with platelet-rich plasma vs corticosteroids. Foot Ankle Int. 2018;39(7):780786.CrossRefGoogle ScholarPubMed
Acosta-Olivo, C, Simental-Mendía, LE, Vilchez-Cavazos, F, Peña-Martínez, VM et al. Clinical efficacy of botulinum toxin in the treatment of plantar fasciitis: A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2022;103(2):364371.CrossRefGoogle ScholarPubMed
Ahadi, T, Nik, SS, Forogh, B, Madani, SP, Raissi, GR. Comparison of the effect of ultrasound-guided injection of botulinum toxin type A and corticosteroid in the treatment of chronic plantar fasciitis: A randomized controlled trial. Am J Phys Med Rehabil. 2022;101(8):733737.CrossRefGoogle ScholarPubMed
Díaz-Llopis, IV, Rodríguez-Ruíz, CM, Mulet-Perry, S et al. Randomized controlled study of the efficacy of the injection of botulinum toxin type A versus corticosteroids in chronic plantar fasciitis: Results at one and six months. Clin Rehabil. 2012;26(7):594606.CrossRefGoogle ScholarPubMed
Abbasian, M, Baghbani, S, Barangi, S et al. Outcomes of ultrasound-guided gastrocnemius injection with botulinum toxin for chronic plantar fasciitis. Foot Ankle Int. 2020;41(1):6368.CrossRefGoogle ScholarPubMed
Huang, YC, Wei, SH, Wang, HK, Lieu, FK. Ultrasonographic guided botulinum toxin type A treatment for plantar fasciitis: An outcome-based investigation for treating pain and gait changes. J Rehabil Med. 2010;42(2):136140.CrossRefGoogle ScholarPubMed
Lou, J, Wang, S, Liu, S, Xing, G. Effectiveness of extracorporeal shock wave therapy without local anesthesia in patients with recalcitrant plantar fasciitis: A meta-analysis of randomized controlled trials. Am J Phys Med Rehabil. 2017;96(8):529534.CrossRefGoogle ScholarPubMed
Roerdink, RL, Dietvorst, M, van der Zwaard, B, van der Worp, H, Zwerver, J. Complications of extracorporeal shockwave therapy in plantar fasciitis: Systematic review. Int J Surg. 2017;46:133145.CrossRefGoogle ScholarPubMed
Roca, B, Mendoza, MA, Roca, M. Comparison of extracorporeal shock wave therapy with botulinum toxin type A in the treatment of plantar fasciitis. Disabil Rehabil. 2016;38(21):21142121.CrossRefGoogle ScholarPubMed
Hocaoglu, S, Vurdem, UE, Cebicci, MA et al. Comparative effectiveness of radial extracorporeal shockwave therapy and ultrasound-guided local corticosteroid injection treatment for plantar fasciitis. J Am Podiatr Med Assoc. 2017;107(3):192199.CrossRefGoogle ScholarPubMed
Sun, K, Zhou, H, Jiang, W. Extracorporeal shock wave therapy versus other therapeutic methods for chronic plantar fasciitis. Foot Ankle Surg. 2020;26(1):3338.CrossRefGoogle ScholarPubMed
Arslan, A, Koca, TT, Utkan, A, Sevimli, R, Akel, İ. Treatment of chronic plantar heel pain with radiofrequency neural ablation of the first branch of the lateral plantar nerve and medial calcaneal nerve branches. J Foot Ankle Surg. 2016;55(4):767771.CrossRefGoogle ScholarPubMed
Erken, HY, Ayanoglu, S, Akmaz, I, Erler, K, Kiral, A. Prospective study of percutaneous radiofrequency nerve ablation for chronic plantar fasciitis. Foot Ankle Int. 2014;35(2):95103.CrossRefGoogle ScholarPubMed
Wu, YT, Chang, CY, Chou, YC et al. Ultrasound-guided pulsed radiofrequency stimulation of posterior tibial nerve: A potential novel intervention for recalcitrant plantar fasciitis. Arch Phys Med Rehabil. 2017;98(5):964970.CrossRefGoogle ScholarPubMed

References

Hsu, E, Cohen, SP. Postamputation pain: Epidemiology, mechanisms, and treatment. J Pain Res. 2013;6:121136.Google ScholarPubMed
Ziegler-Graham, K, MacKenzie, EJ, Ephraim, PL, Travison, TG, Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89:422429.CrossRefGoogle ScholarPubMed
Flahaut, M, Laurent, NL, Michetti, M et al. Patient care for postamputation pain and the complexity of therapies: Living experiences. Pain Manag. 2018;8:441453.CrossRefGoogle ScholarPubMed
Padovani, MT, Martins, MRI, Venâncio, A, Forni, JEN. Anxiety, depression and quality of life in individuals with phantom limb pain. Acta Ortop Bras. 2015;23:107110.CrossRefGoogle ScholarPubMed
Limakatso, K, Bedwell, GJ, Madden, VJ, Parker, R. The prevalence and risk factors for phantom limb pain in people with amputations: A systematic review and meta-analysis. PLoS One. 2020;15(10):e0240431.CrossRefGoogle ScholarPubMed
Flor, H, Elbert, T, Knecht, S et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482484.CrossRefGoogle ScholarPubMed
Melzack, R. Pain and the neuromatrix in the brain. J Dent Educ. 2001;65(12):13781382.CrossRefGoogle ScholarPubMed
Flor, H. Phantom-limb pain: Characteristics, causes, and treatment. Lancet Neurol. 2002;1(3):182189.CrossRefGoogle ScholarPubMed
Bekrater-Bodmann, R, Schredl, M, Diers, M et al. Post-amputation pain is associated with the recall of an impaired body representation in dreams – results from a nation-wide survey on limb amputees. PLoS One. 2015;10(3):e0119552.CrossRefGoogle ScholarPubMed
Anderson-Barnes, VC, McAuliffe, C, Swanberg, KM, Tsao, JW. Phantom limb pain: A phenomenon of proprioceptive memory? Med Hypotheses. 2009;73(4):555558.CrossRefGoogle ScholarPubMed
Anderson, ML. What phantom limbs are. Conscious Cogn. 2018;64:216226.CrossRefGoogle Scholar
Lendaro, E, Hermansson, L, Burger, H et al. Phantom motor execution as a treatment for phantom limb pain: Protocol of an international, double-blind, randomised controlled clinical trial. BMJ Open. 2018;8:e021039.CrossRefGoogle ScholarPubMed
Padovani, MT, Martins, MRI, Venâncio, A, Forni, JEN. Anxiety, depression and quality of life in individuals with phantom limb pain. Acta Ortop Bras. 2015;23:107110.CrossRefGoogle ScholarPubMed
Sahu, A, Gupta, R, Sagar, S, Kumar, M, Sagar, R. A study of psychiatric comorbidity after traumatic limb amputation: A neglected entity. Ind Psychiatry J. 2017;26:228232.Google ScholarPubMed
Vase, L, Egsgaard, LL, Nikolajsen, L et al. Pain catastrophizing and cortical responses in amputees with varying levels of phantom limb pain: A high-density EEG brain-mapping study. Exp Brain Res Springer-Verlag. 2012;218:407417.CrossRefGoogle ScholarPubMed
Herrador Colmenero, L, Perez Marmol, JM, Martí-García, C et al. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review. Prosthet Orthot Int. 2018;42(3):288298.CrossRefGoogle ScholarPubMed
Xie, HM, Zhang, KX, Wang, S et al. Effectiveness of mirror therapy for phantom limb pain: A systematic review and meta-analysis. Arch Phys Med Rehabil. 2022;103(5):988997.CrossRefGoogle ScholarPubMed
Wu, C, Tella, P, Staats, P et al. Analgesic effects of intravenous lidocaine and morphine on postamputation pain. Anesthesiology. 2002;96(2):841848.CrossRefGoogle ScholarPubMed
Huse, E, Larbig, W, Flor, H, Birbaumer, N. The effect of opioids on phantom limb pain and cortical reorganization. Pain. 2001;90(1–2):4755.CrossRefGoogle ScholarPubMed
Eichenberger, U, Neff, F, Sveticic, G et al. Chronic phantom limb pain: The effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesthesia & Analgesia. 2008;106(4):12651273.CrossRefGoogle ScholarPubMed
Alviar, MJ, Hale, T, Dungca, M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev. 2016;10(10):CD006380.Google ScholarPubMed
McAuley, J, van Gröningen, R, Green, C. Spinal cord stimulation for intractable pain following limb amputation. Neuromodulation Technol Neural Interface. 2013;16:530536.CrossRefGoogle ScholarPubMed
Deng, Z, Li, D, Zhan, S et al. Spinal cord stimulation combined with anterior cingulotomy to manage refractory phantom limb pain. Stereotact Funct Neurosurg. 2018;96:204208.CrossRefGoogle ScholarPubMed
Eldabe, S, Burger, K, Moser, H et al. Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation. 2015;18:610617.CrossRefGoogle ScholarPubMed
Cornish, P, Wall, C. Successful peripheral neuromodulation for phantom limb pain. Pain Med. 2015;16:761764.CrossRefGoogle ScholarPubMed
Malavera, A, Silva, FA, Fregni, F, Carrillo, S, Garcia, RG. Repetitive transcranial magnetic stimulation for phantom limb pain in land mine victims: A double-blinded, randomized, sham-controlled trial. J Pain. 2016;17:911918.CrossRefGoogle ScholarPubMed