Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T15:50:06.262Z Has data issue: false hasContentIssue false

Chapter 7 - Basal Ganglia

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 103 - 123
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Select Bibliography

Bolam, J. P., Ingham, C. A., and Magill, P. J. (2006). The basal ganglia VIII. International Basal Ganglia Society. Symposium (8th: 2004: Crieff, Scotland) New York, NY, London, UK: Springer.Google Scholar
Kultas-Ilinsky, K., and Llinsky, I. A. (Eds.). (2001). Basal Ganglia and Thalamus in Health and Movement Disorders. New York, NY: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Ma, T. P. (2013). The basal nuclei. In: Haines, D. E. (Ed.), Fundamental Neuroscience for Basic and Clinical Applications (4th edn.). New York, NY: Churchill Livingstone, pp.354369.Google Scholar
Miguel, E. C., Rauch, S. L., and Leckman, J. F. (1997). Psychiatric Clinics of North America: Neuropsychiatry of the Basal Ganglia (vol. 20). Philadelphia: Saunders.Google Scholar
Moretti, R. (Ed.) 2009. Basal Ganglia and Thalamus: Their Role in Cognition and Behavior. New York, NY: Nova Science.Google Scholar
Nolte, J. (2009). The Human Brain: An Introduction to Its Functional Anatomy; Chapter 19, Basal Ganglia. Philadelphia, PA: Mosby/Elsevier.Google Scholar

References

Ahmari, S. E., Spellman, T., Douglass, N. L., Kheirbek, M. A., Simpson, H. B., Deisseroth, K.,… Hen, R. (2013). Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science, 40(6137), 12341239. doi:10.1126/science.1234733Google Scholar
Ambasudhan, R., Dolatabadi, N., Nutter, A., Masliah, E., Mckercher, S. R., and Lipton, S. A. (2014). Potential for cell therapy in Parkinson’s disease using genetically programmed human embryonic stem cell-derived neural progenitor cells. J. Comp. Neurol., 522(12), 28452856. doi:10.1002/cne.23617CrossRefGoogle ScholarPubMed
Ames, D., Cummings, J. L., Wirshing, W. C., Quinn, B., and Mahler, M. (1994). Repetitive and compulsive behavior in frontal lobe degenerations. J. Neuropsychiatry Clin. Neurosci., 6(2), 100113. Retrieved from www.ncbi.nlm.nih.gov/pubmed/8044031Google ScholarPubMed
Barrow, T. R. (2015). Cell replacement therapy in Parkinson’s disease. Biosci. Horiz., 8:hzv002. doi:10.1093/biohorizons/hzv002CrossRefGoogle Scholar
Baxter, L. R. Jr. (1992). Neuroimaging studies of obsessive compulsive disorder. Psychiatr. Clin. North Am., 15, 871884. Retrieved from www.ncbi.nlm.nih.gov/pubmed/1461802CrossRefGoogle ScholarPubMed
Bekar, L., Libionka, W., Tian, G., Xu, Q., Torres, A., Wang, X.,… Nedergaard, M. (2008). Adenosine is crucial for deep brain stimulation–mediated attenuation of tremor. Nature Med. 14(1), 7580. doi:10.3410/f.1116345.572360CrossRefGoogle ScholarPubMed
Bellucci, A., Mercuri, N. B., Venneri, A., Faustini, G., Longhena, F., Pizzi, M., … Spano, P. (2016). Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol., 42(1), 7794. doi:10.1111/nan.12297Google Scholar
Benarroch, E. E. (2010). Acetylcholine in the cerebral cortex. Neurology, 75(7), 659665. doi:10.1212/WNL.0b013e3181ee267eGoogle Scholar
Beucke, J. C., Sepulcre, J., Talukdar, T., Linnman, C., Zschenderlein, K., Endrass, T.,… Kathmann, N. (2013). Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. J.A.M.A. Psychiatry, 70(6), 619629. doi:10.1001/jamapsychiatry.2013.173Google ScholarPubMed
Bloch, M. H., Leckman, J. F., Zhu, H., and Peterson, B. S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology, 65, 12531258. doi:10.1212/01.wnl.0000180957.98702.69CrossRefGoogle ScholarPubMed
Bloomfield, M. A., Morgan, C. J., Kapur, S., Curran, H. V., and Howes, O. D. (2014). The link between dopamine function and apathy in cannabis users: an [18F] DOPA PET imaging study. Psychopharmacol., 231, 22512259. doi:10.1007/s00213-014–3523-4.Google Scholar
Bogerts, B., Hantsch, J., and Herzer, M. (1983). A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol. Psychiatry, 18, 951969. Retrieved from www.ncbi.nlm.nih.gov/pubmed/6640008Google Scholar
Bohlhalter, S., Goldfine, A., Matteson, S., Garraux, G., Hanakawa, T., Kansaku, K.,… Hallett, M. (2006). Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain, 129, 20292037. doi:10.1093/brain/awl050 2029–2037Google Scholar
Borges, S., Coimbra, B., Soares-Cunha, C., Ventura-Silva, A. P., Pinto, L., Carvalho, M. M.,… Sousa, N. (2013). Glucocorticoid programing of the mesopontine cholinergic system. Front. Endocrinol., 4, 190. doi:10.3389/fendo.2013.00190Google Scholar
Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A., Jansen Steur, E. N., and Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 24, 197211. doi:10.1016/S0197-4580(02)00065–9CrossRefGoogle ScholarPubMed
Brown, L. T., Mikell, C. B., Youngerman, B. E., Zhang, Y., McKhann, G. M. II, and Sheth, S. A. (2016). Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J. Neurosurg., 124(1), 7789. doi:10.3171/2015.1.JNS14681CrossRefGoogle ScholarPubMed
Burke, R. E., and O’Malley, K. (2013). Axon degeneration in Parkinson’s disease. Exp. Neurol., 246, 7283. doi:10.1016/j.expneurol.2012.01.011Google Scholar
Butterworth, R. F. (2013). Parkinsonism in cirrhosis: pathogenesis and current therapeutic options. Metabolic Brain Dis., 28(2), 261267. doi:10.1007/s11011-012–9341-7Google Scholar
Carbon, M., Ma, Y., Barnes, A., Dhawan, V., Chaly, T., Ghilardi, M. F., and Eidelberg, D. (2004). Caudate Nucleus: influence of dopaminergic input on sequence learning and brain activation in Parkinsonism. Neuroimage, 21, 14971507. doi:10.1016/j.neuroimage.2003.12.014Google Scholar
Carboni, E., Silvagni, A., Rolando, M. T., and Di Chiara, G. (2000). Stimulation of in vivo dopamine transmission in the bed nucleus of stria terminalis by reinforcing drugs. J. Neurosci. 20(20), RC102. Retrieved from www.ncbi.nlm.nih.gov/pubmed/11027253Google ScholarPubMed
Casanova, M. F., Crapanzano, K. A., Mannheim, G., and Kruesi, M. (1995). Sydenham’s chorea and schizophrenia: A case report. Schizophrenia Res., 16(1), 7376. doi:10.1016/0920–9964(95)00004–6Google Scholar
Choi, S. H., Olabarrieta, M., Lopez, O. L., Maruca, V., Dekosky, S. T., Hamilton, R. L., and Becker, J. T. (2012). Gray matter atrophy associated with extrapyramidal signs in the Lewy body variant of Alzheimer’s disease. J. Alzheimers Dis., 32(4), 10431039. doi:10.3233/JAD-2012-121108CrossRefGoogle ScholarPubMed
Crick, F. C., and Koch, C. (2005). What is the function of the claustrum? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 12711279. doi:10.1098/rstb.2005.1661Google Scholar
Cummings, J. L. (1992). Depression and Parkinson’s disease: A review. Am. J. Psychiatry, 149, 443454. Retrieved from www.ncbi.nlm.nih.gov/pubmed/1372794. doi:10.1176/ajp.1494.443Google Scholar
Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med., 345, 956963. doi:10.1056/NEJMoa000827Google Scholar
DeLong, M. R., and Benabid, A-L. (2014). Discovery of high-frequency deep brain stimulation for treatment of Parkinson disease. J.A.M.A., 312(11), 10931094. doi:10.1001/jama.2014.11132.Google Scholar
Ehmann, T. S., Beninger, R. J., Gawel, M. J., and Riopelle, R. J. (1990). Depressive symptoms in Parkinson’s disease: A comparison with disabled control subjects. J. Geriatr. Psychiatry Neurol., 1, 39. Retrieved from www.ncbi.nlm.nih.gov/pubmed/2140682CrossRefGoogle Scholar
Everitt, B. J., Belin, D., Economidou, D., Pelloux, Y., Dailey, J. W., and Robbins, T. W. (2008). Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 363, 31253135. doi:10.1098/rstb.2008.0089CrossRefGoogle ScholarPubMed
Falkai, P., and Bogerts, B., (1993). Cytoarchitectonic and developmental studies in schizophrenia. In: Kerwin, R. W. (Ed.), Cambridge Medical Reviews: Neurobiology and Psychiatry, Vol. 2. Cambridge, England: Cambridge University Press, pp.4352.Google Scholar
Figee, M., Luigjes, J., Smolders, R., Valencia-Alfonso, C-E., van Wingen, G., de Kwaastenient, B.,… Denys, D. (2013). Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci., 16, 386387. doi:10.1038/nn.3344Google Scholar
Folstein, S. E., Folstein, M. F., and Starkstein, S. E. (1990) Diseases of the caudate as a model for a manic depressive disorder. In Franks, A. J. (Ed.), Function and Dysfunction in the Basal Ganglia. Manchester: Manchester University Press, pp.239246.Google Scholar
Folstein, S. E., Peyser, C. E., Starkstein, S. E., and Folstein, M. F. (1991). The subcortical triad of Huntington’s disease: A model for a neuropathology of depression, dementia and dyskinesia. In Carroll, B. J. and Barrett, J. E., (Eds.), Psychopathology and the Brain. New York, NY: Raven Press, pp.6575.Google Scholar
Garcia-Rill, E., Luster, B., O’Onofrio, S., Mahaffey, S., Bisagno, V., and Urbano, J. (2015). Pedunculopontine arousal system physiology – Deep brain stimulation (DBS). Sleep Sci., 8(3), 153161. doi:10.1016/j.slsci.2015.09.001Google Scholar
Ginovart, N., and Kapur, S. (2012). Role of dopamine D2 receptors for antipsychotic activity. Handb. Exp. Pharmacol., 212, 2752. doi:10.1007/978–3-642–25761-2_2Google Scholar
Gironell, A., Kulisevsky, J., Rami, L., Fortuny, N., Garcia-Sanchez, C., and Pascual-Sedano, B. (2003). Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J. Neurol., 250(8), 917923. doi:10.1016/j.jns.2008.06.010Google Scholar
Goll, Y., Atlan, G., Citri, A. (2015). Attention: The claustrum. Trends Neurosci., 38(8), 486495. doi:10.1016/j.tins.2015.05.006Google Scholar
Grabli, D., Karachi, C., Folgoas, E., Monfort, M., and Tande, D. (2013). Gait disorders in Parkinsonian monkeys with pedunculopontine nucleus lesions: A tale of two systems. J. Neurosci., 33(29), 1198611993. doi:10.1523/JNEUROSCI.1568–13Google Scholar
Gratwicke, J., Kahan, J., Zrinzo, L., Hariz, M., Limousin, P., Fltynei, T., and Jahanshahi, M. (2013). The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci. Biobehav. Rev., 37, 26762688. doi:10.1016/brain/awu193CrossRefGoogle Scholar
Haber, S. N., and Fudge, J. L. (1997). The primate substantia nigra and VTA: Integrative circuitry and function. Crit. Rev. Neurobiol., 11, 323342. Retrieved from www.researchgate.net/publication/13890443_The_Primate_Substantia_Nigra_and_VTA_Integrative_Circuitry_and_FunctionCrossRefGoogle ScholarPubMed
Hallett, M. (2015). Tourette syndrome: update. Brain Develop., 37(7), 651655. doi:10.1016/j.braindev.2014.11.005Google Scholar
Heimer, L., Alheid, G. F., de Olmos, J. S., Groenewegen, H. J., Haber, S. N., Harlan, R. E., and Zahm, D. S. (1997). The accumbens: Beyond the core-shell dichotomy. J. Neuropsychiatry Clin. Neurosci., 9, 354381. doi:10.1176/jnp.9.3.354Google Scholar
Hepp, D. H., Ruiter, A. M., Galis, Y., Voorn, P., Rozemuller, A. J. M., Berendese, H. W.,… van de Berg, W. D. J. (2013). Pedunclopointine cholinergic cell loss in hallucinating Parkinson disease patients but not in dementia with Lewy bodies patients. J. Neuropath. Exp. Neurol., 72(12), 11621170. doi:10.1097/NEN.0000000000000014Google Scholar
Herholz, K., Weisenbach, S., Zündorf, G., Lenz, O., Schröder, Bauer, B.,… Heiss, W.-D. (2004). In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21, 136143. doi:10.1016/j.neuroimage.2003.09.042Google Scholar
Hickey, P., and Stacy, M. (2016). Deep brain stimulation: A paradigm shifting approach to treat Parkinson’s disease. Front. Neurosci., Apr 28; 10:173. doi:10.3389/fnins.2016.00173Google Scholar
Hoebel, B. G., Avena, N. M., and Rada, P. (2007). Accumbens dopamine–acetylcholine balance in approach and avoidance. Curr. Opin. Pharmacol., 7, 617627. doi:10.1016/j.coph.2007.10.014CrossRefGoogle ScholarPubMed
Hoexter, M. Q., de Souza Duran, F. L. D’Alcante, C. C., Dougherty, D. D., Shavitt, R. G., Lopes, A. C.,… Busatto, G. F. (2012). Gray matter volumes in obsessive-compulsive disorder before and after fluoxetine or cognitive-behavior therapy: a randomized clinical trial. Neuropsychopharmacol., 37, 734745. doi:10.1038/npp.2011.250Google Scholar
Houck, J., and Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cereb. Cortex, 5, 95110. Retrieved from www.ncbi.nlm.nih.gov/pubmed/7620294Google Scholar
Hunn, G. H. M., Cragg, S. J., Bolam, J. P., Spillantini, M-G., and Wade-Martins, R. (2016). Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci., 38(3), 478188. doi:10.1016/j.tins.2014.12.009Google Scholar
Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev., 56(1), 2778. doi:10.1016/j.brainresrev.2007.05.004CrossRefGoogle Scholar
Ito, R., Robbins, T. W., and Everitt, B. J. (2004). Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7, 389397. doi:10.1038/nn1217Google Scholar
Jenkinson, N., Nandi, D., Miall, R. M., and Aziz, T. Z. (2004). Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. NeuroReport. 15(17), 26212624. doi:10.1097/00001756–200412030-00012Google Scholar
Kapur, S., Mizrahi, R., and Li, M. (2005). From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res., 79, 5968. doi:10.1016/j.schres.2005.01.003Google Scholar
Kartsounis, L. D., Poynton, A., Bridges, P. K., and Bartlett, J. R. (1991). Neuropsychological correlates of stereotactic subcaudate tractotomy. A prospective study. Brain, 114(6), 26572673. Retrieved from www.ncbi.nlm.nih.gov/pubmed/1782537Google Scholar
Kerstetter, K. A., Wunsch, A. M., Nakata, K. G., Donckels, E., Neumaier, J. F., and Ferguson, S. M. (2016). Corticostriatal afferents modulate responsiveness to psychostimulant drugs and drug-associated stimuli. Neuropsychopharmacology, 41, 11281137. doi:10.1038/npp.2015.253Google Scholar
Koob, G. F. (2013). Negative reinforcement in drug addiction: the darkness within. Curr. Opin. Neurobiol., 323, 559563. doi:10.1016/j.conb.2013.03.011Google Scholar
Koubeissi, M. Z., Bartolomei, F., Beltagy, A., and Picard, F. (2014). Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav., 37, 3235. doi:10.1016/j.yebeh.2014.05.027Google Scholar
Krauss, J. K. (2002). Deep brain stimulation for dystonia in adults. Overview and developments. Stereotact. Funct. Neurosurg., 78(3–4), 168182. doi:10.1159/000068963CrossRefGoogle ScholarPubMed
Kravitz, A. V., Tye, L. D., and Kreitzer, A. C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci., 15, 816818. doi:10.1038/nn.3100Google Scholar
Kwon, J. S., Jang, J. H., Choi, J. S., and Kang, D. H. (2009). Neuroimaging in obsessive-compulsive disorder. Expert Rev. Neurother., 9, 255269. doi:org/10.1586/14737175.9.2.255Google Scholar
LaLumiere, R. T., Niehoff, K. E., and Kalivas, P. W. (2010). The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn. Mem., 17, 168175. doi:10.1101/lm.1576810Google Scholar
Langston, J. W., and Palfreman, J. (2014). The Case of the Frozen Addicts. Amsterdam, The Netherlands: IOS Press.Google Scholar
Latini, S., and Pedata, F. (2001). Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem., 79, 463484. Retrieved from http://onlinelibrary.wiley.com/doi/10.1046/j.1471–4159.2001.00607.x/pdfCrossRefGoogle ScholarPubMed
Lauterbach, E. C. (1999). The external globus pallidus in depression. J. Neuropsychiatry Clin. Neurosci., 11(4), 515516. doi.org/10.1176/jnp.11.4.515Google Scholar
Laviolette, S. R. (2007). Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia? Schizophr. Bull., 33(4), 971981. doi:10.1093/schbul/sbm048Google Scholar
Leckman, J. F., Grice, D. E., Boardman, J., Zhang, H., Vitale, A., Bondi, C.,… Pauls, D. L. (1997). Symptoms of obsessive-compulsive disorder. Am. J. Psychiatry, 154, 911917. Retrieved from www.ncbi.nlm.nih.gov/pubmed/9210740Google Scholar
Lerner, A., Bagic, A., Simmons, J. M., Mari, Z., Bonne, O., Xu, B.,… Hallett, M. (2012). Widespread abnormality of the γ-aminobutyric acid-ergic system in Tourette syndrome. Brain, 135, 19261936. doi:10.1093/brain/aws104Google Scholar
Lévesque, M. F., Neuman, T., and Rezak, M. (2009). Therapeutic microinjection of autologous adult human neural stem cells and differentiated neurons for Parkinson’s disease: five-year post-operative outcome. Open Stem Cell J., 1, 2029.Google Scholar
Liu, A. K. L., Chang, R. C-C., Pearce, R. K. B., and Gentleman, S. M. (2015). Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol., 129(4), 527540. doi:10.1007/s00401-015–1392-5CrossRefGoogle ScholarPubMed
Lozano, A. M., Mayberg, H. S., Giacobbe, P., Hamani, C., Craddock, R. C., and Kennedy, S. H. (2008). Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry, 64, 461467. doi:10.1001/archgenpsychiatry.2011.1456CrossRefGoogle ScholarPubMed
Luxenberg, J. S., Swedo, S. E., Flament, M. F., Friedland, R. P., Rapoport, J., and Rapoport, S. I. (1988). Neuroanatomical abnormalities in obsessive-compulsive disorder determined with quantitative x-ray computed tomography. Am. J. Psychiatry, 145, 10891093. doi:10.1176/ajp.145.9.1089Google Scholar
Marin, R. S., and Wilkosz, P. A. (2005). Disorders of diminished motivation. J. Head Trauma Rehabil., 20(4), 377388. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/16030444Google Scholar
Mayberg, H. S. (1993). Neuroimaging studies of depression in neurologic disease. In: Starkstein, S. E., and Robinson, R. G. (Eds.), Depression in Neurologic Disease. Baltimore, MD: Johns Hopkins Press, pp.186216.Google Scholar
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C.,… Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651660. doi.org/10.1176/appi.ajpGoogle Scholar
Mendez, M. F., Adams, DN. L., and Skoog, K. M. (1989). Neurobehavioral changes associated with caudate lesions. Neurology, 39(3), 349354. doi:10.1212/WNL.39.3.349Google Scholar
Mendez, M. F., O’Connor, S. M., and Gerald, T. H. (2004). Hypersexuality after right pallidotomy for Parkinson’s Disease. J. Neuropsychiatry Clin. Neurosci., 16, 3740. Retrieved from www.pubpdf.com/pub/14990757/Hypersexuality-after-right-pallidotomy-for-Parkinsons-diseaseGoogle Scholar
Mendez, M. F., Owens, E. M., Reza-Berenji, G., Peppers, D. C., Liang, L. J., and Licht, E. A. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. NeuroRehabilitation, 32(2), 397407. doi:10.3233/NRE-130861Google Scholar
Menza, M. A., and Mark, M. H. (1994). Parkinson’s disease and depression: The relationship to disability and personality. J. Neuropsychiatry Clin. Neurosci., 6, 165169. doi.org/10.1176/jnp.6.2.165Google Scholar
Miller, J. M., Vorel, S. R., Tranguch, A. J., Kenny, E. T., Mazzoni, P., van Gorp, W. G., and Kieber, H. D. (2006). Anhedonia after a selective bilateral lesion of the globus pallidus. Am. J. Psychiatry, 163(5), 786788. doi:10.1016/j.jns.2008.04.031Google Scholar
Munro-Davies, L. E., Winter, J., Aziz, T. Z., and Stein, J. F. (1999). The role of the pedunculopontine region in basal-ganglia mechanism of akinesia. Exp. Brain Res., 129, 511517. doi:10.1007/s002210050921Google Scholar
Nakamae, T., Sakai, Y., Abe, Y., Nishida, S., Fukui, K., Yamada, K.,… Narumoto, J. (2014). Altered fronto-striatal fiber topography and connectivity in obsessive-compulsive disorder. PLoS One, 9(11), e112075. doi:10.1371/journal.pone.0112075Google Scholar
Nakamura, T., Ghilardi, M. F., Mentis, M., Dhawan, V., Fukuda, M., Hacking, A.,… Eidelberg, D. (2001). Functional networks in motor sequence learning: abnormal topographies in Parkinson’s disease. Hum. Brain Mapp., 12, 4260. doi:10.1002/1097–0193(200101)12:1<42::aid-hbm40>3.0.CO;2-DGoogle Scholar
Newsome, M. R., Durgerian, S., Mourany, L., Scheibel, R. S., Lowe, M. J., Beall, E. B.,… Rao, S. M. (2015). Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. Neuroimage Clin., 8(8), 543553. doi:10.1016/j.nicl.2015.04.024Google Scholar
Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O.,… Toru, M. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature, 385(6617), 634636. Retrieved from www.ncbi.nlm.nih.gov/pubmed/9024661Google Scholar
Palacios, J. M., (2015). Serotonin receptors in brain revisited. Brain Res., 15(1645), 4649. doi:10.1016/j.brainres.2015.12.042Google Scholar
Peyser, C. E., and Folstein, S. E. (1993). Depression in Huntington disease. In: Starkstein, S. E. and Robinson, R. G. (Eds.), Depression in Neurologic Disease. Baltimore, MD: Johns Hopkins Press, pp.117138.Google Scholar
Plaha, P., and Gill, S. S. (2005). Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport, 16, 18831887. doi:10.1080/02688690802448350Google Scholar
Price, L. H., Spencer, D. D., Marek, K. L., Robbins, R. J., Leranth, C., Farhi, A.,… Redmond, D. E. Jr. (1995). Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson’s disease. Biol. Psychiatry, 38, 498505. doi:10.1016/0006–3223(95)00129–5Google Scholar
Raff, M. C., Whitmore, A. V., and Finn, J. T. (2000). Axonal self-destruction and neurodegeneration. Science, 296, 868871. doi:10.1126/science.1068613Google Scholar
Remy, P., Doder, M., Lees, A., Turjanski, N., and Brooks, D. (2005). Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain, 128(6), 13141322. doi:10.1093/brain/awh445CrossRefGoogle ScholarPubMed
Roussakis, A. A., Politis, M., Towey, D., and Piccini, P. (2016). Serotonin-to-dopamine transporter ratios in Parkinson disease: Relevance for dyskinesias. Neurology, 86(12), 11521158. doi:10.1212/WNL.0000000000002494Google Scholar
Ryan, L., Martone, M., Linder, J., and Groves, P. (1990). Histological and ultrastructural evidence that d-amphetamine causes degeneration in neostriatum and frontal cortex of man. Brain Res. 518, 6777. doi:10.1016/0006–8993(90)90955-BGoogle Scholar
Saddoris, M. P., Cacciapaglia, F., and Wightman, R. M. (2015). Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. J. Neurosci., 35(33), 1157211582. doi:10.1523/JNEUROSCI.2344–15.2015Google Scholar
Saleh, C., and Fontaine, D. (2015). Deep brain stimulation for psychiatric diseases: what are the risks? Curr. Psychiatry Rep., 17(5). doi:10.1007/s11920-015–0565-1.Google Scholar
Salgado, S., and Kaplitt, M. G. (2015). The nucleus accumbens: a comprehensive review. Stereotact. Funct. Neurosurg., 93, 7593. doi:10.1159/000368279Google Scholar
Salloway, S. and Cummings, J. (1994). Subcortical disease and neuropsychiatric illness. J. Neuropsychiatry Clin. Neurosci., 6(2), 9399. Retrieved from http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.6.2.93Google Scholar
Segawa, M. (2003). Neurophysiology of Tourette’s syndrome: pathophysiological considerations. Brain Dev., 25, S62S69. doi:10.1016/S0387-7604(03)90011–8Google Scholar
Simpson, E. H., Kennendonk, C., and Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 65(5), 585596. doi:10.1016/j.neuron.2010.02.014.Google Scholar
Smeding, H., Speelman, J., Koning-Haanstra, M., Esselink, R. A. J., de Bie, R. M. A., de Haan, Lenders, W. P. M.,… Speelman, J. D. (2006). Neuropsychological effects of bilateral STN stimulation in Parkinson disease: A controlled study. Neurology, 66(12), 18301836. doi:10.1212/01.wnl.0000234881.77830.66Google Scholar
Starkstein, S. E., and Mayberg, H. S. (1993). Depression in Parkinson disease. In: Starkstein, S. E. and Robinson, R. G. (Eds.), Depression in Neurologic Disease. Baltimore, MD: Johns Hopkins Press, pp.97116.Google Scholar
Stefani, A., Lozano, A. M., Peppe, A., Stanzione, P., Galati, S., Tropepi, D.,… Mazzone, P. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain, 130, 15961607. doi:10.1093/brain/awl346Google Scholar
Swedo, S. E., and Leonard, H. L. (1992). Trichotillomania: An obsessive compulsive spectrum disorder? Psychiatr. Clin. North Am., 151, 777790. Retrieved from www.ncbi.nlm.nih.gov/pubmed/1461795Google Scholar
Taba, P. (2013). Metals and movement disorders. Curr. Opin. Neurol., 26(4), 435441. doi:10.1097/WCO.0b013e3283629bebGoogle Scholar
Tagliaferro, P., Kareva, T., Oo, T. F., Yarygina, O., Kholodilov, N., and Burke, R. E. (2015). An early axonopathy in a hLRRK2(R1441G) transgenic model of Parkinson disease. Neurobiol. Dis., 82, 359371. doi:10.1016/j.nbd.2015.07.009Google Scholar
Thorsen, A. L., van den Heuvel, O. A., Hansen, B., and Kvale, G. (2015). Neuroimaging of psychotherapy for obsessive-compulsive disorder: A systematic review. Psychiatry Res. Neuroimaging, 233(3), 306313. doi:10.1016/j.pscychresns.2015.05.004Google Scholar
Trifilieff, P., Feng, B., Urizar, E., Winiger, V., Ward, R. D., Taylor, K. M…. Javitch, J. A. (2013). Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol. Psychiatry, 18(9), 10251033. doi:10.1038/mp.2013.57Google Scholar
van Westen, M., Rietveld, E., Figee, M., and Denys, D. (2015). Clinical outcome and mechanisms of deep brain stimulation for obsessive-compulsive disorder. Curr. Behav. Neurosci. Rep., 2(2), 4148. doi:10.1007/s40473-015–0036-3Google Scholar
Villalba, R. M., and Smith, Y. (2014). Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: a key role of dopamine? Neuroscience, 251, 220. doi:10.1016/j.neuroscience.2013.07.011Google Scholar
Volkow, N. D., and Fowler, J. S. (2000). Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex, 10, 318325. doi:10.1016/j.pscychresns.2015.07.024Google Scholar
Volkow, N. D., and Morales, M. (2015). The brain on drugs: from reward to addiction. Cell, 162(4), 712725. doi:10.1016 j.cell.2015.07.046Google Scholar
Watanabe, K., Kakeda, S., Yoshimura, R., Abe, O., Ide, S., Hayashi, K.,… Korogi, Y. (2015). Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis. Psychiatry Res. Neuroimaging, 233(3), 481487. doi:10.1093/cercor/10.3.318Google Scholar
Winn, P., Brown, V. J., and Inglis, W. L. (1997). On the relationships between the striatum and the pedunculopontine nucleus. Crit. Rev. Neurobiol., 11, 241261. Retrieved from www.ncbi.nlm.nih.gov/pubmed/9336713Google Scholar
Wood, J., and Ahmari, S. E. (2015). A framework for understanding the emerging role of corticolimbic-ventral striatal networks in OCD-associated repetitive behaviors. Front. Syst. Neurosci., 9, 171. doi:10.3389/fnsys.2015.00171Google Scholar
Zebardast, N., Crowley, M. J., Bloch, M. H., Mayes, L. C, Wyk, B. V., Leckman, J. F.,… Swain, J. E. (2013). Brain mechanisms for prepulse inhibition in adults with Tourette syndrome: initial findings. Psychiatry Res., 214, 3341. doi:10.1016/j.pscychresns.2013.05.009Google Scholar
Zhao, M., Momma, S., Delfani, K., Carlén, M., Cassidy, R. M., Johansson, C. B.,… Janson, A. M. (2003). Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Nat. Acad. Sci., 100(13), 79257930. doi:10.1073/pnas.1131955100Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×