Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-l9cl4 Total loading time: 0 Render date: 2024-08-06T04:18:01.976Z Has data issue: false hasContentIssue false

6 - How do replication and transcription change genomes?

from PART II - Gene Transcription and Regulation

Published online by Cambridge University Press:  05 June 2012

Andrey Grigoriev
Affiliation:
Rutgers State University of New Jersey
Pavel Pevzner
Affiliation:
University of California, San Diego
Ron Shamir
Affiliation:
Tel-Aviv University
Get access

Summary

From the evolutionary standpoint, DNA replication and transcription are two fundamental processes enabling reliable passage of fitness advantages through generations (in DNA form) and manifestation of these advantages (in RNA form), respectively. Paradoxically, both of these basic mechanisms not only preserve genetic information but also apparently cause systematic genomic changes directly. Here, I show how genome-scale sequence analysis can help identify such effects, estimate their relative contributions, and find practical application (e.g. for predicting replication origins). Visualization of bioinformatics results is often the best way of connecting them to the underlying biological question and I describe the process of choosing the visual representation that would help compare different organisms, genomes, and chromosomes.

Introduction

A species' genome relies on faithful reproduction to reap the benefits of selection. The very fact that the “fine-tuned” genomes of previous generations carrying important fitness advantages can be preserved in the proliferating progeny is the basis of natural selection. That is how we currently understand evolution and life around us, and this grand scheme can operate only under stringent requirements for the precision with which DNA replicates. It is not surprising, therefore, that one observes higher replication fidelity in more complex organisms.

For the sake of clarity, however, we leave the “more complex organisms” aside for the duration of this chapter. The higher fidelity mentioned above results from many additional processes (including advanced repair) taking place in a cell besides replication.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×