Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T22:39:24.626Z Has data issue: false hasContentIssue false

The role of serum vitamin 25(OH)D concentration in the Covid-19 pandemic in children

Published online by Cambridge University Press:  04 November 2022

Chrysoula Kosmeri*
Affiliation:
Neonatal Intensive Care Unit, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
Foteini Balomenou
Affiliation:
Neonatal Intensive Care Unit, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
Dimitrios Rallis
Affiliation:
Neonatal Intensive Care Unit, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
Maria Baltogianni
Affiliation:
Neonatal Intensive Care Unit, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
Vasileios Giapros
Affiliation:
Neonatal Intensive Care Unit, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
*
*Corresponding author: Chrysoula Kosmeri, email Chrisa.kosmeri@gmail.com

Abstract

The ongoing Coronavirus disease 19 (Covid-19) pandemic and associated mortality in children led to an effort to address risk factors and develop protective measures. Observational studies in adults showed that vitamin D deficiency is associated with Covid-19 severity. The aim of this review was to summarise data regarding the role of serum vitamin 25(OH)D concentration in the severity of Covid-19 and the associated multisystem inflammatory syndrome in children (MIS-C). Many studies noted lower concentrations of vitamin 25(OH)D in children with Covid-19 compared with healthy controls; however, studies that assessed vitamin 25(OH)D suboptimal concentrations as a risk factor for Covid-19 severity were scarce. There was no high-quality evidence that vitamin 25(OH)D concentrations are associated with Covid-19 severity. Similarly, for MIS-C, a few studies with a small number of patients found that vitamin D deficiency was associated with more severe MIS-C. Vitamin D has many immunomodulatory actions and is consumed in the immunomodulatory cells, especially in infections such as the Covid-19 which is associated with increased inflammation and cytokine storm. Therefore, decreased concentrations of plasma vitamin 25(OH)D have been proposed to be the result of vitamin use by immunomodulatory cells in severe Covid-19, rather than a predisposing factor. In conclusion, the available data cannot prove that vitamin D deficiency is a risk factor for severe Covid-19 disease. More studies, of prospective design, are needed to investigate the role of this marker independently of other risk factors.

Type
Review
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cucinotta, D & Vanelli, M (2020) WHO declares COVID-19 a pandemic. Acta Biomed 91, 157160.Google ScholarPubMed
Forrest, CB, Burrows, EK, Mejias, A, et al. (2022) Severity of acute COVID-19 in children < 18 years old March 2020 to December 2021. Pediatrics 149, e2021055765.CrossRefGoogle ScholarPubMed
Dong, Y, Mo, X, Hu, Y, et al. (2020) Epidemiology of COVID-19 among children in China. Pediatrics 145, e20200702.CrossRefGoogle ScholarPubMed
Liguoro, I, Pilotto, C, Bonanni, M, et al. (2020) SARS-COV-2 infection in children and newborns: a systematic review. Eur J Pediatr 179, 10291046.CrossRefGoogle ScholarPubMed
Licciardi, F, Pruccoli, G, Denina, M, et al. (2020) SARS-CoV-2-induced Kawasaki-like hyperinflammatory syndrome: a novel COVID phenotype in Children. Pediatrics 146, e20201711.CrossRefGoogle ScholarPubMed
Verdoni, L, Mazza, A, Gervasoni, A, et al. (2020) An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395, 17711778.CrossRefGoogle ScholarPubMed
Dufort, EM, Koumans, EH, Chow, EJ, et al. (2020) Multisystem inflammatory syndrome in children in New York State. N Engl J Med 383, 347358.CrossRefGoogle ScholarPubMed
Kaushik, A, Gupta, S, Sood, M, et al. (2020) A systematic review of multisystem inflammatory syndrome in children associated with SARS-CoV-2 infection. Pediatr Infect Dis J 39, e340e6.CrossRefGoogle ScholarPubMed
Whittaker, E, Bamford, A, Kenny, J, et al. (2020) Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 324, 259269.CrossRefGoogle ScholarPubMed
Mehta, P, McAuley, DF, Brown, M, et al. (2020) COVID-19: consider cytokine storm syndromes and immune suppression. Lancet 395, 10331034.CrossRefGoogle Scholar
Panfili, FM, Roversi, M, D’Argenio, P, et al. (2021) Possible role of vitamin D in Covid-19 infection in pediatric population. J Endocrinol Invest 44, 2735.CrossRefGoogle ScholarPubMed
Cantorna, MT (2010) Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc 69, 286289.CrossRefGoogle ScholarPubMed
Sharifi, A, Vahedi, H, Nedjat, S, et al. (2019) Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. Apmis 127, 681687.CrossRefGoogle ScholarPubMed
Zisi, D, Challa, A & Makis, A (2019) The association between vitamin D status and infectious diseases of the respiratory system in infancy and childhood. Hormones 18, 353363.CrossRefGoogle ScholarPubMed
Camargo, CA Jr, Ganmaa, D, Frazier, AL, et al. (2012) Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics 130, e561e567.CrossRefGoogle ScholarPubMed
Huang, YN, Chi, H, Chiu, NC, et al. (2022) A randomized trial of vitamin D supplementation to prevent seasonal influenza and enterovirus infection in children. J Microbiol Immunol Infect 55, 803811.CrossRefGoogle ScholarPubMed
Jolliffe, DA, Camargo, CA Jr, Sluyter, JD, et al. (2021) Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol 9, 276292.CrossRefGoogle ScholarPubMed
Saad, K, Abd Aziz, NH, El-Houfey, AA, et al. (2015) Trial of vitamin D supplementation in infants with bronchiolitis: a randomized, double-blind, placebo-controlled study. Pediatr Allergy, Immunol, Pulmonol 28, 102106.CrossRefGoogle Scholar
Maghbooli, Z, Sahraian, MA, Ebrahimi, M, et al. (2020) Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/ml reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS One 15, e0239799.CrossRefGoogle ScholarPubMed
Munshi, R, Hussein, MH, Toraih, EA, et al. (2021) Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol 93, 733740.CrossRefGoogle ScholarPubMed
Merzon, E, Tworowski, D, Gorohovski, A, et al. (2020) Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J 287, 36933702.CrossRefGoogle ScholarPubMed
Palacios, C & Gonzalez, L (2014) Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol 144 Pt A, 138145.CrossRefGoogle ScholarPubMed
Lee, JY, So, TY & Thackray, J (2013) A review on vitamin d deficiency treatment in pediatric patients. J Pediatr Pharmacol Ther 18, 277291.Google ScholarPubMed
Cashman, KD, Dowling, KG, Škrabáková, Z, et al. (2016) Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 103, 10331044.CrossRefGoogle ScholarPubMed
Amrein, K, Scherkl, M, Hoffmann, M, et al. (2020) Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr 74, 14981513.CrossRefGoogle ScholarPubMed
Beyazgül, G, Bağ, Ö, Yurtseven, İ, et al. (2022) How vitamin D levels of children changed during COVID-19 pandemic: a comparison of pre-pandemic and pandemic periods. J Clin Res Pediatr Endocrinol 14, 188195.CrossRefGoogle ScholarPubMed
Kang, HM, Jeong, DC, Suh, BK, et al. (2021) The impact of the Coronavirus Disease-2019 pandemic on childhood obesity and vitamin D status. J Korean Med Sci 36, e21.CrossRefGoogle ScholarPubMed
Rustecka, A, Maret, J, Drab, A, et al. (2021) The impact of COVID-19 pandemic during 2020–2021 on the vitamin D serum levels in the paediatric population in Warsaw, Poland. Nutrients 13, 1990.CrossRefGoogle ScholarPubMed
Wong, RS, Tung, KTS, So, HK, et al. (2021) Impact of COVID-19 pandemic on serum vitamin D level among infants and toddlers: an interrupted time series analysis and before-and-after comparison. Nutrients 13, 1270.CrossRefGoogle ScholarPubMed
Yu, L, Ke, HJ, Che, D, et al. (2020) Effect of pandemic-related confinement on vitamin D status among children aged 0–6 years in Guangzhou, China: a cross-sectional study. Risk Manag Healthc Policy 13, 26692675.CrossRefGoogle ScholarPubMed
Kaya, MO, Pamukçu, E & Yakar, B (2021) The role of vitamin D deficiency on COVID-19: a systematic review and meta-analysis of observational studies. Epidemiol Health 43, e2021074.CrossRefGoogle ScholarPubMed
Bassatne, A, Basbous, M, Chakhtoura, M, et al. (2021) The link between COVID-19 and VItamin D (VIVID): a systematic review and meta-analysis. Metabolism 119, 154753.CrossRefGoogle ScholarPubMed
Alpcan, A, Tursun, S & Kandur, Y (2021) Vitamin D levels in children with COVID-19: a report from Turkey. Epidemiol Infect 149, e180.CrossRefGoogle ScholarPubMed
Katz, J, Yue, S & Xue, W (2021) Increased risk for COVID-19 in patients with vitamin D deficiency. Nutrition 84, 111106.CrossRefGoogle ScholarPubMed
Olivé-Cirera, G, Fonseca, E, Cantarín-Extremera, V, et al. (2022) Impact of COVID-19 in immunosuppressed children with neuroimmunologic disorders. Neurol Neuroimmunol Neuroinflamm 9, e1101.CrossRefGoogle ScholarPubMed
Yılmaz, K & Şen, V (2020) Is vitamin D deficiency a risk factor for COVID-19 in children? Pediatr Pulmonol 55, 35953601.CrossRefGoogle ScholarPubMed
Shah, K, Varna, VP, Pandya, A, et al. (2021) Low vitamin D levels and prognosis in a COVID-19 pediatric population: a systematic review. Qjm 114, 447453.CrossRefGoogle Scholar
Bayramoğlu, E, Akkoç, G, Ağbaş, A, et al. (2021) The association between vitamin D levels and the clinical severity and inflammation markers in pediatric COVID-19 patients: single-center experience from a pandemic hospital. Eur J Pediatr 180, 26992705.CrossRefGoogle ScholarPubMed
Kosmeri, C, Koumpis, E, Tsabouri, S, et al. (2020) Hematological manifestations of SARS-CoV-2 in children. Pediatr Blood Cancer 67, e28745.CrossRefGoogle ScholarPubMed
Liu, J, Li, S, Liu, J, et al. (2020) Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55, 102763.CrossRefGoogle ScholarPubMed
Xu, H, Zhong, L, Deng, J, et al. (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12, 8.CrossRefGoogle ScholarPubMed
Liao, YC, Liang, WG, Chen, FW, et al. (2002) IL-19 induces production of IL-6 and TNF-α and results in cell apoptosis through TNF-alpha. J Immunol 169, 42884297.CrossRefGoogle ScholarPubMed
Singh, S, Sharma, A & Arora, SK (2014) High producer haplotype (CAG) of -863C/A, -308G/A and -238G/A polymorphisms in the promoter region of TNF-α gene associate with enhanced apoptosis of lymphocytes in HIV-1 subtype C infected individuals from North India. PLoS One 9, e98020.CrossRefGoogle ScholarPubMed
Terpos, E, Ntanasis-Stathopoulos, I, Elalamy, I, et al. (2020) Hematological findings and complications of COVID-19. Am J Hematol 95, 834847.CrossRefGoogle ScholarPubMed
Torpoco Rivera, D, Misra, A, Sanil, Y, et al. (2022) Vitamin D and morbidity in children with Multisystem inflammatory syndrome related to Covid-19. Prog Pediatr Cardiol 66, 101507.CrossRefGoogle ScholarPubMed
Darren, A, Osman, M, Masilamani, K, et al. (2022) Vitamin D status of children with paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (PIMS-TS). Br J Nutr 127, 896903.CrossRefGoogle ScholarPubMed
Zheng, S, Yang, J, Hu, X, et al. (2020) Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition. Biochem Pharmacol 177, 113955.CrossRefGoogle ScholarPubMed
Charoenngam, N, Shirvani, A & Holick, MF (2021) Vitamin D and its potential benefit for the COVID-19 pandemic. Endocr Pract 27, 484493.CrossRefGoogle ScholarPubMed
Hansdottir, S, Monick, MM, Hinde, SL, et al. (2008) Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 181, 70907099.CrossRefGoogle ScholarPubMed
Xu, Y, Baylink, DJ, Chen, CS, et al. (2020) The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J Transl Med 18, 322.CrossRefGoogle ScholarPubMed
Charoenngam, N & Holick, MF (2020) Immunologic effects of vitamin D on human health and disease. Nutrients 12, 2097.CrossRefGoogle ScholarPubMed
Cantorna, MT, Snyder, L, Lin, YD, et al. (2015) Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7, 30113021.CrossRefGoogle ScholarPubMed
Feketea, G, Vlacha, V, Bocsan, IC, et al. (2021) Vitamin D in Corona Virus Disease 2019 (COVID-19) related Multisystem Inflammatory Syndrome in Children (MIS-C). Front Immunol 12, 648546.CrossRefGoogle ScholarPubMed
Ahmed, M, Advani, S, Moreira, A, et al. (2020) Multisystem inflammatory syndrome in children: a systematic review. EClinicalMedicine 26, 100527.CrossRefGoogle ScholarPubMed
Carter, MJ, Fish, M, Jennings, A, et al. (2020) Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med 26, 17011707.CrossRefGoogle ScholarPubMed
Lee, PY, Day-Lewis, M, Henderson, LA, et al. (2020) Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J Clin Invest 130, 59425950.CrossRefGoogle ScholarPubMed
Daneshkhah, A, Agrawal, V, Eshein, A, et al. (2020) Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients. Aging Clin Exp Res 32, 21412158.CrossRefGoogle ScholarPubMed
Stroehlein, JK, Wallqvist, J, Iannizzi, C, et al. (2021) Vitamin D supplementation for the treatment of COVID-19: a living systematic review. Cochrane Database Syst Rev 5, Cd015043.Google ScholarPubMed
Martineau, AR, Jolliffe, DA, Hooper, RL, et al. (2017) Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 356, i6583.CrossRefGoogle ScholarPubMed