Let $R$ be a dense subring of $\text{End}\left( _{D}V \right)$, where $V$ is a left vector space over a division ring $D$. If $\dim{{\,}_{D}}V\,=\,\infty $, then the range of any nonzero polynomial $f\left( {{X}_{1}},\,\ldots \,,\,{{X}_{m}} \right)$ on $R$ is dense in $\text{End}\left( _{D}V \right)$. As an application, let $R$ be a prime ring without nonzero nil one-sided ideals and $0\,\ne \,a\,\in \,R$. If $af{{\left( {{x}_{1}},\ldots ,{{x}_{m}} \right)}^{n\left( {{x}_{i}} \right)}}\,=\,0$ for all ${{x}_{1}},\,\ldots \,,\,{{x}_{m}}\,\in \,R$, where $n\left( {{x}_{i}} \right)$ is a positive integer depending on ${{x}_{1}},\,\ldots \,,\,{{x}_{m}}\,\in \,R$, then $f\left( {{X}_{1}},\,\ldots \,,\,{{X}_{m}} \right)$ is a polynomial identity of $R$ unless $R$ is a finite matrix ring over a finite field.