Canad. Math. Bull. Vol. **53** (4), 2010 pp. 667–673 doi:10.4153/CMB-2010-072-1 © Canadian Mathematical Society 2010

On the Endomorphism Rings of Local Cohomology Modules

Kazem Khashyarmanesh

Abstract. Let *R* be a commutative Noetherian ring and a proper ideal of *R*. We show that if $n := \text{grade}_R a$, then $\text{End}_R(H_a^n(R)) \cong \text{Ext}_R^n(H_a^n(R), R)$. We also prove that, for a nonnegative integer *n* such that $H_a^i(R) = 0$ for every $i \neq n$, if $\text{Ext}_R^i(R_z, R) = 0$ for all i > 0 and $z \in a$, then $\text{End}_R(H_a^n(R))$ is a homomorphic image of *R*, where R_z is the ring of fractions of *R* with respect to a multiplicatively closed subset $\{z^j \mid j \ge 0\}$ of *R*. Moreover, if $\text{Hom}_R(R_z, R) = 0$ for all $z \in a$, then $\mu_{H_a^n(R)}$ is an isomorphism, where $\mu_{H_a^n(R)}$ is the canonical ring homomorphism $R \to \text{End}_R(H_a^n(R))$.

1 Introduction

Let *R* be a commutative ring and *M* be an *R*-module. There is a canonical map

 $\mu_M \colon R \longrightarrow \operatorname{End}_R(M)$

such that for $r \in R$, $\mu_M(r)$ is the multiplication map by r on M. It is easy to see that μ_M is a homomorphism of (associative) R-algebras. In general, μ_M is neither injective nor surjective. So, we consider that it is of interest to determine some conditions on M that ensure that μ_M is bijective.

Let (R, \mathfrak{m}) be a Noetherian local ring and $H^n_{\mathfrak{a}}(-)$ be the *n*-th local cohomology functor with support in an ideal \mathfrak{a} of R. Let D(-) be the Matlis dual functor $\operatorname{Hom}_R(-, E)$, where E is the injective hull of the field R/\mathfrak{m} (cf. [10]). There were some problems related to the module $D(H^n_{\mathfrak{a}}(M))$. (See for example conjecture (*) in [2] and [4].) By using the theory of D-modules of [9], Hellus showed that, in a certain situation, for some positive integer n, $H^n_{\mathfrak{a}}(D(H^n_{\mathfrak{a}}(R)))$ is either E or zero [3]. In [7], the present author obtained a generalization of Hellus' Theorem. By using this generalization in conjunction with the spectral sequences method, Hellus and Stückrad showed that if R is Noetherian local complete and \mathfrak{a} an ideal of R such that $H^i_{\mathfrak{a}}(R) = 0$ for every $i \neq n(=\text{height}\mathfrak{a})$, then $\mu_{H^n_{\mathfrak{a}}(R)}$ is bijective [5].

In this paper, by using a natural generalization of regular sequences, we first prove that $\operatorname{End}_R(H^n_{\mathfrak{a}}(R)) \cong \operatorname{Ext}_R^n(H^n_{\mathfrak{a}}(R), R)$, where *n* is the grade of a proper ideal \mathfrak{a} of *R*. Moreover, we show that for a nonnegative integer *n* such that $H^i_{\mathfrak{a}}(R) = 0$ for every $i \neq n$ if $\operatorname{Ext}_R^i(R_z, R) = 0$ for all i > 0 and $z \in \mathfrak{a}$, then $\operatorname{End}_R(H^n_{\mathfrak{a}}(R))$ is a homomorphic image of *R*. (For an *R*-module *L* and an element *z* in *R*, we use the

Received by the editors October 3, 2007.

Published electronically July 26, 2010.

The author was partially supported by a grant from Institute for Studies in Theoretical Physics and Mathematics (IPM) Iran (No. 86130027)

AMS subject classification: 13D45, 13D07, 13D25.

Keywords: local cohomology module, endomorphism ring, Matlis dual functor, filter regular sequence.

notation L_z for the module of fractions of L with respect to the multiplicatively closed subset $\{z^u \mid u \ge 0\}$ of R.) Also if, in addition, $\operatorname{Hom}_R(R_z, R) = 0$ for all $z \in \mathfrak{a}$, then $\mu_{H^n_\mathfrak{a}(R)}$ is bijective. Finally, as a consequence, we deduce the above-mentioned main result of [5].

Throughout this paper, R will denote a commutative Noetherian ring with nonzero identity and a n ideal of R. We shall use \mathbb{N}_0 (respectively \mathbb{N}) to denote the set of nonnegative (respectively positive) integers. Also M will denote a finitely generated R-module. Our terminology follows the textbook [1] on local cohomology.

2 Endomorphism Ring

In this note, we study the endomorphism ring of local cohomology module $H^n_{\mathfrak{a}}(R)$ for a nonnegative integer *n*. To do this, we need a natural generalization of regular sequences, called filter regular sequences.

We say that a sequence x_1, \ldots, x_n of elements of \mathfrak{a} is an \mathfrak{a} -filter regular sequence on M if

$$\operatorname{Supp}_{R}\left(\frac{(x_{1},\ldots,x_{i-1})M:_{M}x_{i}}{(x_{1},\ldots,x_{i-1})M}\right) \subseteq V(\mathfrak{a})$$

for all i = 1, ..., n, where $V(\mathfrak{a})$ denotes the set of prime ideals of R containing \mathfrak{a} . Also, we say that an element $x \in \mathfrak{a}$ is an \mathfrak{a} -filter regular element on M if $\operatorname{Supp}_R(\mathfrak{0}:_M x) \subseteq V(\mathfrak{a})$. The concept of an \mathfrak{a} -filter regular sequence on M is a generalization of the concept of a filter regular sequence, which has been studied in [6, 8, 11, 12] and has led to some interesting results. Both concepts coincide if \mathfrak{a} is an \mathfrak{m} -primary ideal of a local ring with maximal ideal \mathfrak{m} . Note that x_1, \ldots, x_n is a weak M-sequence if and only if it is an R-filter regular sequence on M. It is easy to see that the analogue of [12, Appendix 2(ii)] holds true whenever R is Noetherian, M is finitely generated and \mathfrak{m} replaced by \mathfrak{a} . If x_1, \ldots, x_n is an \mathfrak{a} -filter regular sequence on M. Thus, for a positive integer n, there exists an \mathfrak{a} -filter regular sequence on M of length n.

Now, we recall an exact sequence of local cohomology modules.

Proposition 2.1 (See [7, Lemma 2.2]) For a nonnegative integer n and an α -filter regular sequence $x_1, \ldots, x_{n+1} \in \alpha$ on M, there exists an exact sequence

$$0 \longrightarrow H^n_{\mathfrak{a}}(M) \longrightarrow H^n_{(x_1,\dots,x_n)}(M) \longrightarrow (H^n_{(x_1,\dots,x_n)}(M))_{x_{n+1}} \longrightarrow H^{n+1}_{(x_1,\dots,x_{n+1})}(M) \longrightarrow 0.$$

The following lemma is important to further our investigation in this paper.

Lemma 2.2 Let T be an \mathfrak{a} -torsion R-module and $x \in \mathfrak{a}$. Then, for every R-module L, $\operatorname{Ext}_{R}^{i}(T, L_{x}) = 0$ for all $i \in \mathbb{N}_{0}$.

Proof Suppose that f is an arbitrary element of $\text{Hom}_R(T, L_x)$ and $t \in T$. Then $f(t) = \ell/x^u$ for some $\ell \in L$ and $u \in \mathbb{N}_0$. Since T is an \mathfrak{a} -torsion R-module, there exists a positive integer ν such that $\mathfrak{a}^{\nu}t = 0$. Hence $x^{\nu}\ell/x^u = 0$ in L_x . This implies that $x^{\omega}\ell = 0$ for some $\omega \in \mathbb{N}_0$ and so f(t) = 0. Thus $\text{Hom}_R(T, L_x) = 0$.

Now, since *T* is a-torsion, by [1, Exercise 2.1.8], there exists an injective resolution of *T* in which each term is an a-torsion *R*-module. Hence, in view of the above paragraph, $\text{Ext}_{R}^{i}(T, L_{x}) = 0$ for all $i \in \mathbb{N}_{0}$.

668

Remark 2.3 Let *L* be an *R*-module. Consider the map $\mu_L: R \to \text{End}_R(L)$ that maps *r* to the homomorphism given by multiplication by *r* on *L*. It is easy to see that μ_L is an *R*-algebra homomorphism. Let *n* be a non-negative integer such that $\text{End}_R(H^n_{\mathfrak{a}}(R)) \cong R$. Then the argument used in the last part of proof of [5, Theorem 2.2], showed that the *R*-algebra homomorphism $\mu_{H^n_{\mathfrak{a}}(R)}$ is bijective.

Proposition 2.4 Let *n* be a nonnegative integer and x_1, \ldots, x_n be an α -filter regular sequence on M. Let T be an α -torsion R-module. Then

$$\operatorname{Hom}_{R}(T, H^{n}_{\mathfrak{a}}(M)) \cong \operatorname{Hom}_{R}(T, H^{n}_{(x_{1}, \dots, x_{n})}(M))$$

In particular, $\operatorname{End}_{R}(H^{n}_{\mathfrak{a}}(M)) \cong \operatorname{Hom}_{R}(H^{n}_{\mathfrak{a}}(M), H^{n}_{(x_{1},\ldots,x_{n})}(M)).$

Proof Let x_{n+1} be an element in a such that $x_1, \ldots, x_n, x_{n+1}$ is an a-filter regular sequence on M. (Note that the existence of such an element is explained in the beginning of this section.) By Proposition 2.1, there exists an exact sequence

$$0 \longrightarrow H^n_{\mathfrak{a}}(M) \longrightarrow H^n_{(x_1,\dots,x_n)}(M) \longrightarrow (H^n_{(x_1,\dots,x_n)}(M))_{x_{n+1}}$$

Now, by applying the functor $\text{Hom}_R(T, -)$ to the above exact sequence in conjunction with Lemma 2.2, we have the following isomorphism:

$$\operatorname{Hom}_{R}(T, H^{n}_{\mathfrak{a}}(M)) \cong \operatorname{Hom}_{R}(T, H^{n}_{(x_{1}, \dots, x_{n})}(M)).$$

In the rest of the paper, we need the Čech complex of *R* with respect to a sequence of elements of *R*, so we mention the following notations.

Notations 2.5 Let $\underline{y} := y_1, \ldots, y_n$ be a sequence of elements of R. Set $\mathfrak{b} := (y_1, \ldots, y_n)$. Recall that the Čech complex $C(\underline{y}, R)^{\bullet}$ of R with respect to \underline{y} is the complex

 $0 \longrightarrow C^{0} \longrightarrow C^{1} \longrightarrow \ldots \longrightarrow C^{i} \longrightarrow C^{i+1} \longrightarrow \ldots \longrightarrow C^{n} \longrightarrow 0,$

where $C^0 = R$ and for $1 \le i \le n$, C^i is a direct sum of some copies of $R_{y_{k(1)}...y_{k(i)}}$, where $1 \le k(1) < k(2) < \cdots < k(i) \le n$ (cf. [1, Proposition and Definition 5.1.5]). Also note that, by [1, Theorem 5.1.19], $H^i(C(y, R)^{\bullet}) \cong H^i_{\rm b}(R)$ for all $i \in \mathbb{N}_0$.

In the following theorem we study the endomorphism ring $\operatorname{End}_R(H_{\mathfrak{a}}^{\operatorname{grade}_R\mathfrak{a}}(R))$ as we promised in the introduction.

Theorem 2.6 Let a be a proper ideal of R and $n := \text{grade}_R a$. Then, for every a-torsion R-module T, we have the following isomorphism:

$$\operatorname{Hom}_{R}(T, H^{n}_{\mathfrak{a}}(R)) \cong \operatorname{Ext}_{R}^{n}(T, R).$$

In particular, $\operatorname{End}_R(H^n_{\mathfrak{a}}(R)) \cong \operatorname{Ext}^n_R(H^n_{\mathfrak{a}}(R), R).$

Proof In view of the case n = 0 of Proposition 2.4, we may assume that n > 0. Let $\underline{x} := x_1, \ldots, x_n$ be a regular sequence on *R* contained in a and

$$C(\underline{x}, R)^{\bullet} \colon 0 \longrightarrow C^{0} \xrightarrow{d^{0}} C^{1} \longrightarrow \cdots \longrightarrow C^{i} \xrightarrow{d^{i}} C^{i+1} \longrightarrow \cdots \xrightarrow{d^{n-1}} C^{n} \longrightarrow 0$$

denote the Čech complex of *R* with respect to \underline{x} . Since $H^i(C(\underline{x}, R)^{\bullet}) \cong H^i_{(x_1, \dots, x_n)}(R)$ = 0 for all *i* with $0 \leq i \leq n-1$ and $H^n_{(x_1, \dots, x_n)}(R) = C^n / \operatorname{Im} d^{n-1}$, we have the following exact sequence

$$0 \longrightarrow C^{0} \xrightarrow{d^{0}} C^{1} \longrightarrow \cdots \longrightarrow C^{n-1} \xrightarrow{d^{n-1}} C^{n} \xrightarrow{\varepsilon} H^{n}_{(x_{1},...,x_{n})}(R) \longrightarrow 0,$$

where ε is the natural homomorphism. Set $L^i := \text{Im } d^i$ for all i with $0 \le i \le n - 1$. Hence, we have the exact sequences

$$0 \longrightarrow L^{n-1} \longrightarrow C^n \longrightarrow H^n_{(x_1,\dots,x_n)}(R) \longrightarrow 0,$$

$$0 \longrightarrow L^{i-1} \longrightarrow C^i \longrightarrow L^i \longrightarrow 0,$$

for all *i* with $1 \le i \le n - 1$. Now, in view of Lemma 2.2, we obtain the following isomorphisms:

$$\operatorname{Hom}_{R}(T, H^{n}_{(x_{1}, \dots, x_{n})}(R)) \cong \operatorname{Ext}_{R}^{1}(T, L^{n-1}) \cong \operatorname{Ext}_{R}^{2}(T, L^{n-2}) \cong \cdots$$
$$\cdots \cong \operatorname{Ext}_{R}^{n-1}(T, L^{1}) \cong \operatorname{Ext}_{R}^{n}(T, C^{0}) \cong \operatorname{Ext}_{R}^{n}(T, R).$$

Since x_1, \ldots, x_n is also an \mathfrak{a} -filter regular sequence on R, the result now follows from Proposition 2.4.

For an *R*-module *M*, the cohomological dimension of *M* with respect to \mathfrak{a} is defined as

$$cd(\mathfrak{a}, M) := \max\{i \in \mathbb{Z} \mid H^{i}_{\mathfrak{a}}(M) \neq 0\}$$

Theorem 2.7 Let \mathfrak{a} be a proper ideal of R such that $n := \operatorname{grade}_R \mathfrak{a} = \operatorname{cd}(\mathfrak{a}, R)$. Let $\operatorname{Ext}_R^i(R_z, R) = 0$ for all $i \in \mathbb{N}$ and $z \in \mathfrak{a}$.

- (i) $\operatorname{End}_{R}(H_{\mathfrak{a}}^{n}(R))$ is a homomorphic image of R.
- (ii) If, moreover, $\operatorname{Hom}_R(R_z, R) = 0$ for all $z \in \mathfrak{a}$, then $\operatorname{End}_R(H^n_\mathfrak{a}(R)) \cong R$ and so $\mu_{H^n_\mathfrak{a}(R)}$ is bijective.

Proof First, suppose that n > 0 and that $\underline{y} := y_1, \ldots, y_t$ is a generating set of a. Then, by [1, Corollary 3.3.3], we have that $\overline{t} \ge n$. Consider the Čech complex of R with respect to y as follows:

$$C(\underline{y},R)^{\bullet} \colon 0 \longrightarrow C^{0} \xrightarrow{d^{0}} C^{1} \longrightarrow \cdots \longrightarrow C^{n} \xrightarrow{d^{n}} C^{n+1} \longrightarrow \cdots \xrightarrow{d^{t-1}} C^{t} \longrightarrow 0.$$

For every $i \in \mathbb{N}_0$ with $0 \le i \le t - 1$, we put $L^i := \operatorname{Im} d^i$. Since $H^i_{\mathfrak{a}}(R) = 0$ for all i with $i \ne n$, we have the exact sequences

$$0 \longrightarrow C^{0} \xrightarrow{d^{0}} C^{1} \longrightarrow \cdots \longrightarrow C^{n-1} \xrightarrow{d^{n-1}} L^{n-1} \longrightarrow 0,$$

$$0 \longrightarrow \operatorname{Ker} d^{n} \longrightarrow C^{n} \xrightarrow{d^{n}} C^{n+1} \longrightarrow \cdots \longrightarrow C^{t} \longrightarrow 0.$$

670

Note that L^n is not defined in the case n = t (similarly for L^1 in the case n = 0). Hence we have the exact sequences

$$(2.1) 0 \longrightarrow \operatorname{Ker} d^n \longrightarrow C^n \longrightarrow L^n \longrightarrow 0,$$

$$(2.2) 0 \longrightarrow L^{i-1} \longrightarrow C^i \longrightarrow L^i \longrightarrow 0,$$

for all *i* with $1 \le i \le t - 1$ and $i \ne n$. Now, by our assumption $\text{Ext}_R^j(C^i, R) = 0$ for all $i, j \in \mathbb{N}$. Thus, by using the exact sequences (2.1) and (2.2), we have the following isomorphisms for $i \in \mathbb{N}$:

$$\operatorname{Ext}_{R}^{i}(\operatorname{Ker} d^{n}, R) \cong \operatorname{Ext}_{R}^{i+1}(L^{n}, R) \cong \operatorname{Ext}_{R}^{i+2}(L^{n+1}, R) \cong \cdots$$
$$\cdots \cong \operatorname{Ext}_{R}^{i+t-n}(L^{t-1}, R) = \operatorname{Ext}_{R}^{i+t-n}(C^{t}, R) = 0$$

and so

(2.3)
$$\operatorname{Ext}_{R}^{i}(\operatorname{Ker} d^{n}, R) = 0 \text{ for all } i \in \mathbb{N}$$

Since $H^n_{\mathfrak{a}}(R) = \operatorname{Ker} d^n / L^{n-1}$, we have the following exact sequence

$$(2.4) 0 \longrightarrow L^{n-1} \longrightarrow \operatorname{Ker} d^n \longrightarrow H^n_{\mathfrak{a}}(R) \longrightarrow 0$$

Whenever n = 1, by considering the *R*-module $\text{Hom}_R(L^0, R)$, the result immediately follows from Theorem 2.6 and the exact sequence (2.4). So we may also assume that $n \ge 2$. Now, Theorem 2.6, in conjunction with (2.2),(2.3), and (2.4), induces the following isomorphisms.

$$\operatorname{End}_{R}(H^{n}_{\mathfrak{q}}(R)) \cong \operatorname{Ext}_{R}^{n}(H^{n}_{\mathfrak{q}}(R), R) \cong \operatorname{Ext}_{R}^{n-1}(L^{n-1}, R) \cong \cdots \cong \operatorname{Ext}_{R}^{1}(L^{1}, R)$$

Also, (2.2) implies the exact sequence

$$\operatorname{Hom}_{R}(C^{1}, R) \longrightarrow \operatorname{Hom}_{R}(L^{0}, R) \longrightarrow \operatorname{Ext}^{1}_{R}(L^{1}, R) \longrightarrow 0$$

Therefore, $\operatorname{End}_R(H^n_{\mathfrak{a}}(R))$ is a homomorphic image of $\operatorname{Hom}_R(L^0, R)$ and the last module is *R* because d^0 is injective. If, moreover, $\operatorname{Hom}_R(R_z, R) = 0$ for all $z \in \mathfrak{a}$, then $\operatorname{Hom}_R(C^1, R) = 0$ and so $\operatorname{End}_R(H^n_{\mathfrak{a}}(R)) \cong R$.

In the case that n = 0, by slight modifications in the first part of the above arguments, we conclude that there exist the exact sequences (2.2) and

$$0 \longrightarrow \Gamma_{\mathfrak{a}}(R) \longrightarrow R \longrightarrow L^0 \longrightarrow 0.$$

So we have the exact sequence

$$(2.5) \qquad 0 \longrightarrow \operatorname{Hom}_{R}(L^{0}, R) \longrightarrow R \longrightarrow \operatorname{Hom}_{R}(\Gamma_{\mathfrak{a}}(R), R) \longrightarrow \operatorname{Ext}^{1}_{R}(L^{0}, R)$$

and the isomorphisms

$$\operatorname{Ext}^{1}_{R}(L^{0}, R) \cong \operatorname{Ext}^{2}_{R}(L^{1}, R) \cong \ldots \cong \operatorname{Ext}^{t}_{R}(L^{t-1}, R) \cong \operatorname{Ext}^{t}_{R}(C^{t}, R).$$

But, by our assumption, $\operatorname{Ext}_{R}^{t}(C^{t}, R) = 0$. Thus, in view of Theorem 2.6, $\operatorname{End}_{R}(\Gamma_{\mathfrak{a}}(R))$ is a homomorphic image of *R*.

For the last assertion, in light of (2.2), we have the exact sequence

(2.6)
$$\operatorname{Hom}_{R}(C^{1}, R) \longrightarrow \operatorname{Hom}_{R}(L^{0}, R) \longrightarrow \operatorname{Ext}_{R}^{1}(L^{1}, R)$$

and the isomorphisms

$$\operatorname{Ext}_R^1(L^1, R) \cong \operatorname{Ext}_R^2(L^2, R) \cong \ldots \cong \operatorname{Ext}_R^{t-1}(L^{t-1}, R) = \operatorname{Ext}_R^{t-1}(C^t, R) = 0.$$

(Note that if t = 1, then $L^1 = 0$.) By our assumption, $\text{Hom}_R(C^1, R) = 0$ and so, by (2.6), $\text{Hom}_R(L^0, R) = 0$. Now, (2.5) completes the proof.

The following corollary is an immediate consequence of Theorem 2.7, which is a main result of [5].

Corollary 2.8 (See [5, Theorem 2.2]) Let (R, \mathfrak{m}) be a Noetherian local complete ring and \mathfrak{a} an ideal of R such that $n := \operatorname{grade}_{R} \mathfrak{a} = \operatorname{cd}(\mathfrak{a}, R)$. Set $H := H_{\mathfrak{a}}^{n}(R)$. Then

$$\mu_H \colon R \longrightarrow \operatorname{End}_R(H)$$

is an isomorphism of R-algebras.

Proof Let $i \in \mathbb{N}_0$. Since *R* is complete and $\mathfrak{a} \subseteq \mathfrak{m}$, for every $z \in \mathfrak{a}$ we have the following isomorphisms

$$\operatorname{Ext}_{R}^{i}(R_{z}, R) \cong \operatorname{Ext}_{R}^{i}(R_{z}, \operatorname{Hom}_{R}(E, E)) \cong \operatorname{Hom}_{R}(\operatorname{Tor}_{i}^{R}(E, R_{z}), E) = 0,$$

where *E* is the injective hull of R/\mathfrak{m} . Thus, by Theorem 2.7, $\operatorname{End}_R(H) \cong R$. Now the result follows from Remark 2.3.

Acknowledgments The author is deeply grateful to Dr. Fahimeh Khosh-Ahang for helpful discussions about Corollary 2.8 and to the referee for helpful suggestions.

References

- M. Brodmann and R. Y. Sharp, *Local cohomology: an algebraic introduction with geometric applications*. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
- M. Hellus, On the associated primes of Matlis duals of top local cohomology modules. Comm. Algebra 33(2005), no. 11, 3997–4009. doi:10.1080/00927870500261314
- [3] _____, Finiteness properties of duals of local cohomology modules. Comm. Algebra 35(2007), no. 11, 3590–3602. doi:10.1080/00927870701512069
- M. Hellus and J. Stückrad, *Local Cohomology and Matlis duality*. Univ. Iagel. Acta. Math. 45(2007), 63–70.
- [5] ______, On endomorphism rings of local cohomology. Proc. Amer. Math. Soc. 136(2008), no. 7, 2333–2341. doi:10.1090/S0002-9939-08-09240-X
- [6] K. Khashyarmanesh, On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Amer. Math. Soc. 135(2007), no. 5, 1319–1327. doi:10.1090/S0002-9939-06-08664-3
- [7] ______, On the Matlis duals of local cohomology modules. 88(2007), no. 5, 413–418. doi:10.1007/s00013-006-1115-1

On the Endomorphism Rings of Local Cohomology Modules

- [8] K. Khashyarmanesh and Sh. Salarian, Filter regular sequences and the finiteness of local cohomology modules. Comm. Algebra **26**(1998), no. 8, 2483–2490. doi:10.1080/00927879808826293 G. Lyubeznik, *Finiteness properties of local cohomology modules (an application of D-modules to*
- [9] *commutative algebra*). Invent. Math. **113**(1993), no. 1, 41–55. doi:10.1007/BF01244301 [10] E. Matlis, *Injective modules over Noetherian rings*. Pacific J. Math. **8**(1958), 511–528.
- [11] P. Schenzel, N. V. Trung, and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85(1978), 57–73. doi:10.1002/mana.19780850106
- [12] J. Stückrad and W. Vogel, Buchsbaum rings and applications. An interaction between algebra, geometry and topology. Springer-Verlag, Berlin, 1986.

Ferdowsi University of Mashhad, Department of Mathematics, Mashhad, Iran e-mail: Khashyar@ipm.ir