We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a foundation for algebraic geometry, developed internal to the Zariski topos, building on the work of Kock and Blechschmidt (Kock (2006) [I.12], Blechschmidt (2017)). The Zariski topos consists of sheaves on the site opposite to the category of finitely presented algebras over a fixed ring, with the Zariski topology, that is, generating covers are given by localization maps for finitely many elements $f_1,\dots, f_n$ that generate the ideal $(1)=A\subseteq A$. We use homotopy-type theory together with three axioms as the internal language of a (higher) Zariski topos. One of our main contributions is the use of higher types – in the homotopical sense – to define and reason about cohomology. Actually computing cohomology groups seems to need a principle along the lines of our “Zariski local choice” axiom, which we justify as well as the other axioms using a cubical model of homotopy-type theory.
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0< p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher.
We determine the dimensions of $\textrm{Ext}$-groups between simple modules and dual generalized Verma modules in singular blocks of parabolic versions of category $\mathcal{O}$ for complex semisimple Lie algebras and affine Kac-Moody algebras.
We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety whose minimal class is algebraic. In particular, the Jacobian of a smooth projective curve over the complex numbers satisfies the integral Hodge conjecture for one-cycles. The main ingredient is a lift of the Fourier transform to integral Chow groups. Similarly, we prove the integral Tate conjecture for one-cycles on the Jacobian of a smooth projective curve over the separable closure of a finitely generated field. Furthermore, abelian varieties satisfying such a conjecture are dense in their moduli space.
We develop a theory of minimal models for algebras over a Koszul operad with trivial differential defined over a commutative ring (containing $\mathbb {Q}$ in the symmetric case), not necessarily a field, extending and supplementing the work of Sagave for the associative case. Our minimal models are bigraded and contain a projective resolution of the homology.
We present a framework for the computation of the Hopf 2-cocycles involved in the deformations of Nichols algebras over semisimple Hopf algebras. We write down a recurrence formula and investigate the extent of the connection with invariant Hochschild cohomology in terms of exponentials. As an example, we present detailed computations leading to the explicit description of the Hopf 2-cocycles involved in the deformations of a Nichols algebra of Cartan type
$A_2$
with
$q=-1$
, a.k.a. the positive part of the small quantum group
$\mathfrak{u}^+_{\sqrt{-\text{1}}}(\mathfrak{sl}_3)$
. We show that these cocycles are generically pure, that is they are not cohomologous to exponentials of Hochschild 2-cocycles.
Using crossed homomorphisms, we show that the category of weak representations (respectively admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs) is a left module category over the monoidal category of representations of Lie algebras. In particular, the corresponding bifunctor of monoidal categories is established to give new weak representations (respectively admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs). This generalises and unifies various existing constructions of representations of many Lie algebras by using this new bifunctor. We construct some crossed homomorphisms in different situations and use our actions of monoidal categories to recover some known constructions of representations of various Lie algebras and to obtain new representations for generalised Witt algebras and their Lie subalgebras. The cohomology theory of crossed homomorphisms between Lie algebras is introduced and used to study linear deformations of crossed homomorphisms.
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the
$\ell $
-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie
$\ell $
-adique de ces tours.
A twisted cocycle taking values on a Lie group G is a cocycle that is twisted by an automorphism of G in each step. In the case where G = GL(d, ℝ), we prove that if two Hölder continuous twisted cocycles satisfying the so-called fiber-bunching condition have the same periodic data then they are cohomologous.
We correct the proof of the main $\ell$-independence result of the above-mentioned paper by showing that for any smooth and proper variety over an equicharacteristic local field, there exists a globally defined such variety with the same ($p$-adic and $\ell$-adic) cohomology.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
In the crudest sense, stable homotopy theory is the study of those homotopy invariant constructions of spaces which are preserved by suspension. In this chapter, we show how there are naturally occurring situations which exhibit stable behaviour. We will discuss several historic attempts at constructing a “stable homotopy category” where this stable behaviour can be studied, and we relate these to the more developed notions of spectra and the Bousfield–Friedlander model structure. Of course, if one only wants to perform calculations of stable homotopy groups, to have certain spectral sequences or similar, then one does not need much of the formalism of model categories of spectra. But as soon as one wishes to move away from those tasks and consider other stable homotopy theories (such as G–equivariant stable homotopy theory for some group G) or to make serious use of a symmetric monoidal smash product in the context of “Brave New Algebra”, then the advantages of the more formal setup become overwhelming.
The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.
We study Tate motives with integral coefficients through the lens of tensor triangular geometry. For some base fields, including $\overline{\mathbb{Q}}$ and $\overline{\mathbb{F}_{p}}$, we arrive at a complete description of the tensor triangular spectrum and a classification of the thick tensor ideals.
Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated with the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated with the Weyl chambers of type Cn and Dn, completing the computation for all classical types.
Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct $p$-adic $L$-functions for non-critical slope rational modular forms, the theory has been extended to construct $p$-adic $L$-functions for non-critical slope automorphic forms over totally real and imaginary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous construction over a general number field. In particular, we start by proving a control theorem stating that the specialisation map from overconvergent to classical modular symbols is an isomorphism on the small slope subspace. We then show that if one takes the modular symbol attached to a small slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding overconvergent symbol, which moreover interpolates critical values of the $L$-function of the eigenform. We prove that this distribution is independent of the choices made in its construction. We define the $p$-adic $L$-function of the eigenform to be this distribution.
For an arbitrary discrete probability-measure-preserving groupoid $G$, we provide a characterization of property (T) for $G$ in terms of the groupoid von Neumann algebra $L(G)$. More generally, we obtain a characterization of relative property (T) for a subgroupoid $H\subset G$ in terms of the inclusions $L(H)\subset L(G)$.
In this article we study various forms of $\ell$-independence (including the case $\ell =p$) for the cohomology and fundamental groups of varieties over finite fields and equicharacteristic local fields. Our first result is a strong form of $\ell$-independence for the unipotent fundamental group of smooth and projective varieties over finite fields. By then proving a certain ‘spreading out’ result we are able to deduce a much weaker form of $\ell$-independence for unipotent fundamental groups over equicharacteristic local fields, at least in the semistable case. In a similar vein, we can also use this to deduce $\ell$-independence results for the cohomology of smooth and proper varieties over equicharacteristic local fields from the well-known results on $\ell$-independence for smooth and proper varieties over finite fields. As another consequence of this ‘spreading out’ result we are able to deduce the existence of a Clemens–Schmid exact sequence for formal semistable families. Finally, by deforming to characteristic $p$, we show a similar weak version of $\ell$-independence for the unipotent fundamental group of a semistable curve in mixed characteristic.