This study was aimed to investigate whether EPA and arachidonic acid (ARA), the representative n-3 or n-6 PUFA, could alleviate enterotoxigenic Escherichia coli (ETEC) K88-induced inflammation and injury of intestinal porcine epithelial cells 1 (IPEC-1) by modulating pyroptosis and necroptosis signalling pathways. IPEC-1 cells were cultured with or without EPA or ARA in the presence or absence of ETEC K88. EPA and ARA reduced ETEC K88 adhesion and endotoxin content in the supernatant. EPA and ARA increased transepithelial electrical resistance, decreased permeability of fluorescein isothiocyanate-labelled dextran, increased membrane protein expression of occludin, ZO-1 and claudin-1 and relieved disturbed distribution of these proteins. EPA and ARA also reduced cell necrosis ratio. EPA or ARA reduced mRNA and concentration of TNF-α, IL-6 and IL-8 and decreased mRNA abundances of intestinal toll-like receptors 4 and its downstream signals. Moreover, EPA and ARA downregulated mRNA expression of nod-like receptor protein 3 (NLRP3), caspase 1 and IL-18 and inhibited protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), gasdermin D and caspase-1. Finally, EPA and ARA reduced mRNA expression of fas-associated death domain protein, caspase 8, receptor-interacting protein kinase (RIP) 1, mixed lineage kinase-like protein (MLKL), phosphoglycerate mutase 5 (PGAM5), motility-related protein 1 (Drp1) and high mobility protein 1 (HMGB1) and inhibited protein expression of phosphorylated-RIP1, p-RIP3, p-MLKL and HMGB1. These data demonstrate that EPA and ARA prevent ETEC K88-induced cell inflammation and injury, which is partly through inhibiting pyroptosis and necroptosis signalling pathways.