We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a homotopy-theoretic interpretation of intuitionistic first-order logic based on ideas from Homotopy Type Theory. We provide a categorical formulation of this interpretation using the framework of Grothendieck fibrations. We then use this formulation to prove the central property of this interpretation, namely homotopy invariance. To do this, we use the result from [8] that any Grothendieck fibration of the kind being considered can automatically be upgraded to a two-dimensional fibration, after which the invariance property is reduced to an abstract theorem concerning pseudonatural transformations of morphisms into two-dimensional fibrations.
We develop a theory of minimal models for algebras over a Koszul operad with trivial differential defined over a commutative ring (containing $\mathbb {Q}$ in the symmetric case), not necessarily a field, extending and supplementing the work of Sagave for the associative case. Our minimal models are bigraded and contain a projective resolution of the homology.
We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin–Eklof–Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.
We construct a calculus of functors in the spirit of orthogonal calculus, which is designed to study ‘functors with reality’ such as the Real classifying space functor, . The calculus produces a Taylor tower, the n-th layer of which is classified by a spectrum with an action of . We further give model categorical considerations, producing a zigzag of Quillen equivalences between spectra with an action of and a model structure on the category of input functors which captures the homotopy theory of the n-th layer of the Taylor tower.
We introduce a general definition for coloured cyclic operads over a symmetric monoidal ground category, which has several appealing features. The forgetful functor from coloured cyclic operads to coloured operads has both adjoints, each of which is relatively simple. Explicit formulae for these adjoints allow us to lift the Cisinski–Moerdijk model structure on the category of coloured operads enriched in simplicial sets to the category of coloured cyclic operads enriched in simplicial sets.
We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$-coherent rings introduced by Bravo–Perez. So a $0$-coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$-coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.
This paper sets up the foundations for derived algebraic geometry, Goerss–Hopkins obstruction theory, and the construction of commutative ring spectra in the abstract setting of operadic algebras in symmetric spectra in an (essentially) arbitrary model category. We show that one can do derived algebraic geometry a la Toën–Vezzosi in an abstract category of spectra. We also answer in the affirmative a question of Goerss and Hopkins by showing that the obstruction theory for operadic algebras in spectra can be done in the generality of spectra in an (essentially) arbitrary model category. We construct strictly commutative simplicial ring spectra representing a given cohomology theory and illustrate this with a strictly commutative motivic ring spectrum representing higher order products on Deligne cohomology. These results are obtained by first establishing Smith’s stable positive model structure for abstract spectra and then showing that this category of spectra possesses excellent model-theoretic properties: we show that all colored symmetric operads in symmetric spectra valued in a symmetric monoidal model category are admissible, i.e., algebras over such operads carry a model structure. This generalizes the known model structures on commutative ring spectra and $\text{E}_{\infty }$-ring spectra in simplicial sets or motivic spaces. We also show that any weak equivalence of operads in spectra gives rise to a Quillen equivalence of their categories of algebras. For example, this extends the familiar strictification of $\text{E}_{\infty }$-rings to commutative rings in a broad class of spectra, including motivic spectra. We finally show that operadic algebras in Quillen equivalent categories of spectra are again Quillen equivalent. This paper is also available at arXiv:1410.5699v2.
In this paper, we show that the known models for (∞, 1)-categories can all be extended to equivariant versions for any discrete group G. We show that in two of the models we can also consider actions of any simplicial group G.
We define model structures on a triangulated category with respect to some proper classes of triangles and give a general study of triangulated model structures. We look at the relationship between these model structures and cotorsion pairs with respect to a proper class of triangles on the triangulated category. In particular, we get Hovey's one-to-one correspondence between triangulated model structures and complete cotorsion pairs with respect to a proper class of triangles. Some applications are given.
We introduce a notion of n-quasi-categories as fibrant objects of a model category structure on presheaves on Joyal's n-cell category Θn. Our definition comes from an idea of Cisinski and Joyal. However, we show that this idea has to be slightly modified to get a reasonable notion. We construct two Quillen equivalences between the model category of n-quasi-categories and the model category of Rezk Θn-spaces, showing that n-quasi-categories are a model for (∞, n)-categories. For n = 1, we recover the two Quillen equivalences defined by Joyal and Tierney between quasi-categories and complete Segal spaces.
Motivated by traces of matrices and Euler characteristics of topological spaces, we expect abstract traces in a symmetric monoidal category to be “additive”. When the category is “stable” in some sense, additivity along cofiber sequences is a question about the interaction of stability and the monoidal structure.
May proved such an additivity theorem when the stable structure is a triangulation, based on new axioms for monoidal triangulated categories. in this paper we use stable derivators instead, which are a different model for “stable homotopy theories”. We define and study monoidal structures on derivators, providing a context to describe the interplay between stability and monoidal structure using only ordinary category theory and universal properties. We can then perform May's proof of the additivity of traces in a closed monoidal stable derivator without needing extra axioms, as all the needed compatibility is automatic.
For any perfect field k a triangulated category of K-motives is constructed in the style of Voevodsky's construction of the category . To each smooth k-variety X the K-motive is associated in the category and
where pt = Spec(k) and K(X) is Quillen's K-theory of X.
We provide a brief description of the mathematics that led to Daniel Quillen's introduction of model categories, a summary of his seminal work “Homotopical algebra”, and a brief description of some of the developments in the field since.
This note gives a simple cocycle-theoretic proof of the Verdier hypercovering theorem. This theorem approximates morphisms $[X,\,Y]$ in the homotopy category of simplicial sheaves or presheaves by simplicial homotopy classes of maps, in the case where $Y$ is locally fibrant. The statement proved in this paper is a generalization of the standard Verdier hypercovering result in that it is pointed (in a very broad sense) and there is no requirement for the source object $X$ to be locally fibrant.
In a paper from 2002, Hovey introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce: the Gorenstein flat model structure. The homotopy category with respect to each of these is called the stable module category of R. If such a ring R has finite global dimension, the graded ring R[x]/(x2) is Gorenstein and the three associated Gorenstein model structures on R[x]/(x2)-Mod, the category of graded R[x]/(x2)-modules, are nothing more than the usual projective, injective and flat model structures on Ch(R), the category of chain complexes of R-modules. Although these correspondences only recover these model structures on Ch(R) when R has finite global dimension, we can set R = ℤ and use general techniques from model category theory to lift the projective model structure from Ch(ℤ) to Ch(R) for an arbitrary ring R. This shows that homological algebra is a special case of Gorenstein homological algebra. Moreover, this method of constructing and lifting model structures carries through when ℤ[x]/(x2) is replaced by many other graded Gorenstein rings (or Hopf algebras, which lead to monoidal model structures). This gives us a natural way to generalize both chain complexes over a ring R and the derived category of R and we give some examples of such generalizations.
We prove a structure theorem for triangulated Calabi–Yau categories: an algebraic 2-Calabi–Yau triangulated category over an algebraically closed field is a cluster category if and only if it contains a cluster-tilting subcategory whose quiver has no oriented cycles. We prove a similar characterization for higher cluster categories. As an application to commutative algebra, we show that the stable category of maximal Cohen–Macaulay modules over a certain isolated singularity of dimension 3 is a cluster category. This implies the classification of the rigid Cohen–Macaulay modules first obtained by Iyama and Yoshino. As an application to the combinatorics of quiver mutation, we prove the non-acyclicity of the quivers of endomorphism algebras of cluster-tilting objects in the stable categories of representation-infinite preprojective algebras. No direct combinatorial proof is known as yet. In the appendix, Michel Van den Bergh gives an alternative proof of the main theorem by appealing to the universal property of the triangulated orbit category.
This note shows that any set of cofibrations containing the standard set of generating projective cofibrations determines a cofibrantly generated proper closed model structure on the category of simplicial presheaves on a small Grothendieck site, for which the weak equivalences are the local weak equivalences in the usual sense.
For a closed topological $n$-manifold $X$, the surgery exact sequence contains the set of manifold structures and the set of tangential structures of $X$. In the case of a compact topological $n$-manifold with boundary $(X$, $\partial X)$, the classical surgery theory usually considers two different types of structures. The first one concerns structures whose restrictions are fixed on the boundary. The second one uses two similar structures on the manifold pair. In his classical book, Wall mentioned the possibility of introducing a mixed type of structure on a manifold with boundary. Following this suggestion, we introduce mixed structures on a topological manifold with boundary, and describe their properties. Then we obtain connections between these structures and the classical ones, and prove that they fit in some surgery exact sequences. The relationships can be described by using certain braids of exact sequences. Finally, we discuss explicitly several geometric examples.