We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to determine the ideal pacing site in children by comparing the postoperative ventricular synchrony in children with left bundle branch area pacing and those with right ventricular septal pacing.
Methods:
This retrospective study included children with complete atrioventricular block who underwent permanent pacemaker implantation from March 2019 to August 2021. Patients were grouped according to their ventricular pacing site, the left bundle branch area pacing group and the right ventricular septal pacing group. Two-dimensional speckle tracking echocardiography was used to evaluate the ventricular synchrony.
Results:
Forty-eight children (median age, 2.7 years; interquartile range, 1.7–4.6 years) were included. The paced QRS duration in the left bundle branch area pacing group was significantly narrower than that in the right ventricular septal pacing group (100.2 ± 9.3 versus 115.4 ± 15.1 ms, p = 0.001). The median follow-up duration was 1.5 years (interquartile range, 1–2 years). At the last follow-up, the average capture threshold of the ventricular electrode in the left bundle branch area pacing group was lower than that in the right ventricular septal pacing group (0.79 ± 0.18 versus 1.20 ± 0.56 V, p = 0.008). The left ventricular intraventricular synchrony parameters in the left bundle branch area pacing group were better than those in the right ventricular septal pacing group (e.g. standard deviation of the time to peak longitudinal strain, 37.4 ± 4.3 versus 46.6 ± 8.2 ms, p = 0.000). The average interventricular mechanical delay time in the left bundle branch area pacing group was significantly shorter than that in the right ventricular septal pacing group (36.4 ± 14.2 versus 52.5 ± 22.7 ms, p = 0.016).
Conclusion:
Compared with right ventricular septal pacing, left bundle branch area pacing in children produces a narrower QRS duration and better pacing and ventricular synchrony parameters postoperatively.
High harmonic generation (HHG) is an ideal probing source. In general, all harmonics are coupled with the corresponding input laser when generated, and for applications, they are separated using additional spectrometers. Herein, we report the angular isolation of relativistic harmonics at a predicted emission angle upon generation and, most importantly, a new phase-matching chain selection rule is derived to generate harmonics. Based on the laser plasma mechanism involving two non-collinear relativistic driving lasers, the nth harmonic carrying the information of both input lasers originates from its adjacent (n – 1)th harmonic coupled with one of the input lasers. Meanwhile, the intensity and emission angle of the generated isolated harmonic are both greatly increased compared with those in the gas scheme. These results are satisfactorily verified by theoretical analysis and three-dimensional particle-in-cell simulations, which have physical significance and are essential for practical applications.
Alienation towards parents often occurs when parents divorce; however, it can also occur when one or both parents leave for work for more than 6 months. Our previous investigation has confirmed a high level of feelings of alienation towards parents among Chinese left-behind children. However, the longitudinal prediction of alienation on children's mental health outcomes remains largely unknown. This study aims to observe the prediction of alienation towards parents on children's depression 12 months later and potential mediators and moderators.
Methods
A total of 1090 Chinese left-behind children took part in this 12-month follow-up investigation, using the Chinese version of the Inventory of Alienation towards Parents (IAP), the Children's Depression Inventory (CDI), the Adolescent Self-Rating Life-events Checklist (ASLEC), and the Adolescent Resilience Scale.
Results
Alienation towards parents was high (16.42 ± 7.27 for mother, 15.63 ± 7.17 for father) in left-behind children, and 21.01% of children reported depression. Alienation towards parents predicted current depression of children directly and later depression indirectly; children's alienation toward their mothers was a stronger predictor of depression than alienation towards fathers. In models, stressful life-events acted as a risk mediator. Previous depression was the strongest risk predictor, resilience was the strongest protective factor, and duration of fathers’ absence and parents’ marital status moderated the predictive effects.
Conclusions
This study is among the first to longitudinally confirm that alienation towards parents is a predictor of children's later depression. The results provide important suggestions for families and schools; i.e. to prevent depression in left-behind children, parent−child bonds especially alienation towards mothers, should be carefully considered, and individuals with more negative life-events and weaker resilience need further attention.
Cognitive impairment in late-life depression is common and associated with a higher risk of all-cause dementia. Late-life depression patients with comorbid cardiovascular diseases (CVDs) or related risk factors may experience higher risks of cognitive deterioration in the short term. We aim to investigate the effect of CVDs and their related risk factors on the cognitive function of patients with late-life depression.
Methods:
A total of 148 participants were recruited (67 individuals with late-life depression and 81 normal controls). The presence of hypertension, coronary heart disease, diabetes mellitus, or hyperlipidemia was defined as the presence of comorbid CVDs or related risk factors. Global cognitive functions were assessed at baseline and after a one-year follow-up by the Mini-Mental State Examination (MMSE). Global cognitive deterioration was defined by the reliable change index (RCI) of the MMSE.
Results:
Late-life depression patients with CVDs or related risk factors were associated with 6.8 times higher risk of global cognitive deterioration than those without any of these comorbidities at a one-year follow-up. This result remained robust after adjusting for age, gender, and changes in the Hamilton Depression Rating Scale (HAMD) scores.
Conclusions:
This study suggests that late-life depression patients with comorbid CVDs or their related risk factors showed a higher risk of cognitive deterioration in the short-term (one-year follow up). Given that CVDs and their related risk factors are currently modifiable, active treatment of these comorbidities may delay rapid cognitive deterioration in patients with late-life depression.
The collimated electron jets ejected from cylindrical plasma are produced in particle-in-cell simulation under the applied longitudinal magnetostatic field and radial electrostatic field, which is a process that can be conveniently performed in a laboratory. We find that the applied magnetostatic field contributes significantly to the jet collimation, whereas the applied electrostatic field plays a vital role in the jet formation. The generation mechanism of collimated jets can be well understood through energy gain of the tagged electrons, and we conclude that the longitudinal momentum of the electrons is converted from the transverse momentum via the transverse-induced magnetic field. It has been found that the ejecting velocity of the jets is close to the speed of light when the applied electrostatic field reaches 3 × 1010 V/m. The present scheme may also give us an insight into the formation of astrophysical jets in celestial bodies.
Right atrial appendage aneurysm is an extremely rare congenital malformation with unknown aetiology. The most common potential complication is atrial arrhythmias including atrial flutter, atrial fibrillation, and atrial tachycardia. These arrhythmias are usually refractory to medication therapy. Radiofrequency catheter ablation has poor efficacy with low success rate and high recurrence rate. Aneurysm resection is the recommended treatment with satisfactory efficacy. We report a child with chaotic atrial tachycardia due to giant right atrial appendage aneurysm who was successfully treated by aneurysm resection.
Our research aims at exploring a new oxygen reduction reaction (ORR) catalyst with effective catalytic capability, which can be used in the metal-air batteries. ORR electrocatalysts of carbon black and carbon aerogel supported Pt-based nanoparticles were synthesized by a chemical impregnation reduction method. The electrochemical measurement consisted of cyclic voltammetry (CV) and line scan of scanning electrochemical microscopy (SECM) conducted in alkaline medium as well as the single-cell tests. All the tests indicate that the Pt–Zn/carbon aerogel (Pt–Zn/CA) catalyst, with the specific discharge capacity reaching 1349.5 mA h g−1, exhibits the best catalytic performance among all the tested catalysts. The doping of Zn forms Pt-rich surface, creates more d-band vacancies, and reduces the leaching problem; the use of carbon aerogels brings larger specific surface area. These aspects have all improved the catalytic activity per unit mass.
Plasma wakefield excited by a short TeV-scale proton beam is investigated in the highly nonlinear regime. Analysis of the “bubble” field illustrates that transverse expelling force of the wakefield can be compensated by the attractive force, which originates from the co-propagating electrons within the proton bunch, leading to a collimation effect that stabilizes the beam propagation. The protons located in the beam tail can be well-confined and accelerated forward for a long distance. Two-dimensional simulations show that after a 1-TeV proton bunch propagating through plasma for a distance, several percentages of the protons achieve a remarkable energy gain. This scheme presents a potential that proton beams from conventional accelerators may gain considerable additional energy through plasmas wakefields.
We explore the feasibility of accelerating electron beams up to energies much beyond 1 TeV in a realistic scale and evolution of the beam qualities such as emittance and energy spread at the final beam energy on the order of 100 TeV, using the newly formulated coupled equations describing the beam dynamics and radiative damping of electrons. As an example, we present a design for a 100 TeV laser-plasma accelerator in the operating plasma density np = 1015 cm−3 and numerical solutions for evolution of the normalized emittance as well as their analytical solutions. We show that the betatron radiative damping causes very small normalized emittance that promises future applications for the high-energy frontier physics.
A laser wakefield accelerator (LWFA) with a weak focusing force is considered to seek improved beam quality in LWFA. We employ super-Gaussian laser pulses to generate the wakefield and study the behavior of the electron beam dynamics and synchrotron radiation arising from the transverse betatron oscillations through analysis and computation. We note that the super-Gaussian wakefields radically reduce the betatron oscillations and make the electron orbits mainly ballistic over a single stage. This feature permits to obtain small emittance and thus high luminosity, while still benefitting from the low-density operation of LWFA (Nakajima et al. 2011 Phys. Rev. ST Accel. Beams14, 091301), such as the reduced radiation loss, less number of stages, less beam instabilities, and less required wall plug power than in higher density regimes.
Large amounts of bronze weapons have been unearthed from the pits of the Terracotta Warriors. Though they are of the same period, their condition is quite different; some are slightly corroded; some have almost no corrosion with a gray-black or green-gray surface; some are badly corroded. ICP, XRD, SEM, EDX, XRF, AES and Metalloscope were employed on seven bronze weapons to investigate their composition, structure and differences between the surfaces and bulk metals. Results showed that all these bronze weapons are high-tin bronzes. The three bronze swords contain a higher tin content than the others and have undergone heat treatment, which gives them the necessary tenacity of weapons. The surface layers of the weapons are rich in tin in various degrees because of selective corrosion and the migration of copper ions during corrosion. Some objects are more corrosion-resistant by a quenching treatment and the formation of compact tin oxides.
We report compound-specific radiocarbon analyses of organic matter in ocean sediments from the northeast Pacific Ocean. Chemical extractions and a preparative capillary gas chromatograph (PCGC) were used to isolate phospholipid fatty acids (PLFA) and n-alkanes from 3 cores collected off the coast of California, USA. Mass of samples for accelerator mass spectrometry (AMS) 14C analysis ranged from 13–100 μg C. PLFA extracted from anaerobic sediments in the Santa Barbara Basin (595 m depth) had modern Δ14C values (–20 to +54‰), indicating bacterial utilization of surface-produced, post-bomb organic matter. Lower Δ14C values were obtained for n-alkanes and PLFA from coast (92 m depth) and continental slope (1866 m) sediments, which reflect sources of old organic matter and bioturbation. We present a brief analysis of the blank carbon introduced to samples during chemical processing and PCGC isolation.
The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ∼0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ∼0.6 ± 0.3 μg C, while DC is ∼0.3 ± 0.15 μg C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and ≅0.001 mg C for internal research activities with a precision of ∼1% for ∼0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined.
Ball milling of ammonothermally synthesized GaN powders was performed in an ethanol solution for a variety of durations, resulting in average particle sizes of nanometer. The ball milled powders showed an obviously brightened color and improved dispersability, indicating reduced levels of aggregation. X-ray diffraction (XRD) peaks of the ball milled GaN powders were significantly broadened compared to those of the as-synthesized powders. The broadening of the XRD peaks was partially attributed to the reduction in the average particle size, which was confirmed through SEM analyses. On the other hand, rare earth doping of commercial GaN powders was also achieved through a ball mill assisted solid state reaction process. Rare earth salts were mixed with GaN powder by ball milling. The as-milled powders were heat treated under different conditions to facilitate the dopant diffusion. Luminescence properties of the rare earth doped GaN powders at near infrared range were investigated and the results were discussed.
Neutron production from a thin deuterium–tritium (D–T) foil irradiated by two intense femtosecond laser pulses from opposite sides with zero phase difference is studied analytically and numerically. For the interaction of a laser pulse of amplitude $a=7$, focal area 100 $\mu$m$^2$ and areal density $4.4\times 10^{18}$ cm$^{-2}$ with a D–T plasma foil, about $1.17\times 10^{21}$ neutron s$^{-1}$ can be obtained, much more than from other methods. The profiles of the ion and electron densities are also calculated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.