We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations.
Contact force is one of the most significant feedback for robots to achieve accurate control and safe interaction with environment. For continuum robots, it is possible to estimate the contact force based on the feedback of robot shapes, which can address the difficulty of mounting dedicated force sensors on the continuum robot body with strict dimension constraints. In this paper, we use local curvatures to estimate the magnitude and location of single or multiple contact forces based on Cosserat rod theory. We validate the proposed method in a thin elastic tube and calculate the curvatures via Fiber Bragg Grating (FBG) sensors or image feedback. For the curvature feedback obtained from multicore FBG sensors, the overall force magnitude estimation error is
$0.062 \pm 0.068$
N and the overall location estimation error is
$3.51 \pm 2.60$
mm. For the curvature feedback obtained from image, the overall force magnitude estimation error is
$0.049 \pm 0.048$
N and the overall location estimation error is
$2.75 \pm 1.71$
mm. The results demonstrate that the curvature-based force estimation method is able to accurately estimate the contact force.
Plasma vertical displacement control is essential for the stable operation of tokamak devices. The traditional plasma vertical displacement calculation method is not suitable for balancing speed and accuracy simultaneously, which is necessary for real-time feedback control. In this study, neural networks are used to rapidly detect vertical displacement recognition. Based on a fully connected neural network, the vertical displacement calculation model is trained and tested using magnetic data of approximately 2000 shots. To compare the effects of different inputs on vertical displacement calculation, different magnetic measurement diagnostic signals are used to train and test the model. Compared with a full magnetic measurement dataset, 39 magnetic measurement signals (38 magnetic probes and plasma current) show better accuracy with mean square error <0.0005. The model is tested using historical experimental data, and it demonstrates accurate vertical displacement calculation even in the case of a vertical displacement event. In general, neural network algorithm has great application potential in vertical displacement calculation.
Evidence on the long-term comparative effectiveness of posttraumatic stress disorder (PTSD) psychotherapies in adults remains unknown. Therefore, we performed an extensive network meta-analysis of randomised controlled trials (RCTs) to determine the comparative effectiveness of psychotherapies for people diagnosed with PTSD.
Methods
A comprehensive search was conducted in Cochrane library, Embase, Medline-OVID, PubMed, Scopus, and Psych-Info until March 2021. Studies on the effectiveness of cognitive processing therapy (CPT), cognitive therapy (CT), eye movement desensitisation reprocessing (EMDR), narrative exposure therapy (NET), prolonged exposure (PE), cognitive behavioural therapy (CBT), present-centred therapy (PCT), brief eclectic psychotherapies (BEP), psychodynamic therapy (PDT) or combination therapies compared to no treatment (NT) or treatment as usual (TAU) in adults with PTSD were included. Frequentist and Bayesian approaches were used for analysis in R-software.
Results
We included 98 RCTs with 5567 participants from 18 897 studies. CPT, EMDR, CT, NET, PE, CBT, and PCT were significant to reduce PTSD symptoms (SMD range: −1.53 to −0.75; Certainty: very low to high) at immediate post-treatment and ranked accordingly. Longitudinal analysis found EMDR (1.02) and CPT (0.85) as the significant therapies with large effect size in short-term and long-term follow-up, respectively. NET and CPT showed higher proportion of loss of PTSD diagnosis (RR range: 5.51–3.45) while there were no significant psychotherapies for retention rate compared to NT.
Conclusions:
Our findings provide evidence for improving current guidelines and informing clinical decision-making for PTSD management. However, the best PTSD treatment plan should be tailored to patients' needs, characteristics, and clinician expertise.
The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.
This work elucidated the performance and mechanisms of Pb2+ adsorption by kaolinite, montmorillonite, goethite and ferrihydrite using batch experiments. The contributions of various adsorption mechanisms were quantified using a stepwise extraction method. Several characterizations (scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, point of zero charge analysis and X-ray fluorescence) were utilized to analyse the physicochemical properties and the potential adsorption mechanisms. The results indicated that the adsorption processes of montmorillonite and goethite approached equilibrium within 20 min, while 60 min were required for the adsorption processes of kaolinite and ferrihydrite. The adsorption processes of Pb2+ by the four minerals best fit the pseudo-second order model. The adsorption capacities of the four minerals for Pb2+ followed the order: montmorillonite > goethite > ferrihydrite > kaolinite, and the maximum adsorption capacities were 69.20, 46.95, 34.32 and 18.62 mg g–1, respectively. The stepwise extraction test showed that the adsorption mechanism of Pb2+ was dominated by ion exchange for montmorillonite, precipitation and complexation for goethite and complexation for kaolinite and ferrihydrite.
The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossil Wutubus and discoidal fossils Aspidella and Hiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, including Pteridinium, Rangea, Arborea, and Charnia. In this paper, we report two species of the rangeomorph genus Charnia, including the type species Charnia masoni Ford, 1958 emend. and Charnia gracilis new species, from the Shibantan biota. Most of the Shibantan Charnia specimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to other Charnia species, the Shibantan specimens of Charnia gracilis n. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle. Charnia fossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups.
Using data from three automatic weather stations (LGB69, Eagle and Dome A) from distinctly different climatological zones along the CHINARE (Chinese National Antarctic Research Expedition) traverse route from Zhongshan Station to Dome A, we investigated the characteristics of meteorological conditions and subsurface heat conduction. Spatial analysis indicated decreasing trends in air temperature, relative humidity and wind speed from the coastal katabatic wind zone to the inland plateau region, and air temperatures clearly showed a strong daily variability in winter, suggesting the effect from the fluctuation in the Antarctic atmospheric system. We also analyzed the optimal response time of the 1 and 3 m depth snow temperatures to the 0.1 m depth snow temperature for each site under clear/overcast and day/night situations. This showed an important enhancement to the heat transfer from shortwave radiation penetration. Using an iterative optimization method, we estimated the subsurface heat conduction variations along the transect. This was ~3–5 W m–2. Multiple maxima in daily mean subsurface fluxes were found in winter, with a typical value above 2 W m–2, while a single minimum value under –2 W m–2 was found in summer. On an annual scale, a larger mean loss of subsurface heat conduction was observed in the inland plateau compared to in the coastal katabatic area. Finally, we discussed the possible influences of turbulent and radiant transport on the vertical heat response and confirmed the wind enhancement on the growth of thermal conductivity. This preliminary study provides a brief perspective and an important reference for studying subsurface heat conduction in inland areas of Antarctica.
Particle-resolved direct numerical simulations are employed to investigate the particle–particle drag force in the bidisperse gas–particle suspensions where the particles are smooth and the single-particle velocity distribution function is Maxwellian. The particle Reynolds number ranges from 6.7 to 123.8, and in this range the particle inertia is high enough that the lubrication force is not essential. It is found that the relation derived by the kinetic theory of granular flow (KTGF) highly overestimates the particle–particle drag force. This is because the pre-collision velocities of colliding particles are not completely uncorrelated with each other. From the time sequence of collision events, it is observed that the particle pair that has just collided will probably collide again after a short time due to the restriction of the particle motion in dense suspensions. Since the post-collision velocities of the first collision cannot relax entirely in such a short time, the relative velocity before the subsequent collision is statistically smaller than the domain-averaged relative velocity. Consequently, the particle–particle drag force is over-predicted when the domain-averaged relative velocity is used. For this reason, this work assumes that the particle–particle drag force is determined by the relative velocity within a local region near large particles. When the local region is set to be the spherical shells centred on the centres of large particles and with an outer radius of a mean free path of small particles, the KTGF-based relation can reasonably predict the particle–particle drag force.
In this work, a confined-doped fiber with the core/inner-cladding diameter of 40/250 μm and a relative doping ratio of 0.75 is fabricated through a modified chemical vapor deposition method combined with the chelate gas deposition technique, and subsequently applied in a tandem-pumped fiber amplifier for high-power operation and transverse mode instability (TMI) mitigation. Notably, the impacts of the seed laser power and mode purity are preliminarily investigated through comparative experiments. It is found that the TMI threshold could be significantly affected by the seed laser mode purity. The possible mechanism behind this phenomenon is proposed and revealed through comprehensive comparative experiments and theoretical analysis. Finally, a maximum output power of 7.49 kW is obtained with the beam quality factor of approximately 1.83, which is the highest output power ever reported in a forward tandem-pumped confined-doped fiber amplifier. This work could provide a good reference and practical solution to improve the TMI threshold and realize high-power high-brightness fiber lasers.
Depressive symptoms, functional impairment, and decreased quality of life (QOL) are three important domains of major depressive disorder (MDD). However, the possible causal relationship between these factors has yet to be elucidated. Moreover, it is not known whether certain symptoms of MDD are more impairing than others. The network approach is a promising solution to these shortfalls.
Methods
The baseline data of a multicenter prospective project conducted in 11 governances of China were analyzed. In total, 1385 patients with MDD were included. Depressive symptoms, functioning disability, and QOL were evaluated by the 17-item Hamilton Depression Rating Scale (HAMD-17), the Sheehan Disability Scale (SDS), and the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF). The network was estimated through the graphical Least Absolute Shrinkage and Selection Operator (LASSO) technique in combination with the directed acyclic graph.
Results
Three centrality metrics of the graphical LASSO showed that social life dysfunction, QOL, and late insomnia exhibited the highest strength centrality. The network accuracy and stability were estimated to be robust and stable. The Bayesian network indicated that some depressive symptoms were directly associated with QOL, while other depressive symptoms showed an indirect association with QOL mediated by impaired function. Depressed mood was positioned at the highest level in the model and predicted the activation of functional impairment and anxiety.
Conclusions
Functional disability mediated the relationship between depressive symptoms and QOL. Family functionality and suicidal symptoms were directly related to QOL. Depressed mood played the predominant role in activating both anxiety symptom and functional impairment.
Caregiver-mediated intervention (CMI), based on parent skills training, is a family-mediated intervention model for children with neurodevelopmental disorders, in particular autism spectrum disorder. This study aimed to evaluate the effectiveness of CMI.
Methods:
Thirty-three children (aged 22–69 months from our department) and their caregivers participated in a two-week training course of ten 90-minute lessons. Caregivers were encouraged to try their best to apply intervention skills in both home routines and play routines to encourage the development of cognition, motion, social adaptability, and behavior of children. Demographic information, video-recorded data, and diagnostic scales were collected at two key time points: baseline and post-training (PT – within six months).
Results:
Three aspects were assessed – primary variables, secondary variables, and correlation analyses. Results showed an improvement in PT in (1) Adult/Child Interaction Fidelity Rating (P < 0.01) and (2) adaptability of Gesell Developmental Scale and stereotyped behaviors and limited interests of Autism Diagnostic Observation Schedule (P < 0.05, P < 0.01). Moreover, a negative correlation occurred between caregiver skill improvement and parent education (P < 0.05), but without correlations with other demographics.
Conclusions:
As an efficacious family intervention for both children and their caregivers, CMI is worth being generalized widely.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy.
Design:
In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage–response relationship between serum folate and the risk of GDM.
Setting:
A sigle, urban hospital in Shanghai, China.
Participants:
A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included.
Results:
Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs)
Conclusions:
The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
Pharmacological treatment of major depressive disorder is often inefficient, and multiple strategies are used for inadequate response to antidepressants. Second-generation antipsychotics are used as augmentation measures in clinical practice; evidence of their efficacy and acceptability is insufficient, and it remains confusing as to which drug should be selected first. In this systematic review and network meta-analysis, we included randomised controlled trials of second-generation antipsychotics used as adjunctive treatment in patients with suboptimal responses. Outcome measures were efficacy (response and remission) and acceptability (dropout due to any reason and adverse events). Thirty-three trials comprising 10 602 participants were included. Regarding efficacy, response rates indicated that all antipsychotics except for ziprasidone were more efficacious than the placebo, with the odds ratios (ORs) ranging from 1.34 for olanzapine and cariprazine [95% credible interval (CrI) 1.04–1.73 and 1.07–1.67, respectively] to 2.17 for risperidone (95% CrI 1.38–3.42). When considering remission, cariprazine was not effective (OR 1.21, 95% CrI 0.96–1.54). For acceptability, quetiapine (OR 0.68, 95% CrI 0.50–0.91), brexpiprazole (OR 0.69, 95% CrI 0.55–0.86), and cariprazine (OR 0.61, 95% CrI 0.46–0.82) were worse than the placebo. With regards to tolerability, only olanzapine (OR 0.51, 95% CrI 0.25–1.07) and risperidone (OR 0.48, 95% CrI 0.10–2.21) showed no significant differences compared with placebo. The administration of adjunctive antipsychotics is associated with high effectiveness and low acceptability. Risperidone and aripiprazole are more efficacious and accepted than other atypical antipsychotics.
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a severe and life-threatening complication, characterised by multi-organ failure and high short-term mortality. However, there is limited information on the impact of various comorbidities on HBV-ACLF in a large population. This study aimed to investigate the relationship between comorbidities, complications and mortality. In this retrospective observational study, we identified 2166 cases of HBV-ACLF hospitalised from January 2010 to March 2018. Demographic data from the patients, medical history, treatment, laboratory indices, comorbidities and complications were collected. The mortality rate in our study group was 47.37%. Type 2 diabetes mellitus was the most common comorbidity, followed by alcoholic liver disease. Spontaneous bacterial peritonitis, pneumonia and hepatic encephalopathy (HE) were common in these patients. Diabetes mellitus and hyperthyroidism are risk factors for death within 90 days, together with gastrointestinal bleeding and HE at admission, HE and hepatorenal syndrome during hospitalisation. Knowledge of risk factors can help identify HBV-ACLF patients with a poor prognosis for HBV-ACLF with comorbidities and complications.
The fish-eye star sensor with a field of view (FOV) of 180° is an important piece of equipment for attitude determination, which improves the visibility of stars significantly. However, it also brings the star identification (star-ID) difficulties because of imprecise calibrations. Thus, a fish-eye star-ID algorithm supported by the integration of the precise point positioning/inertial navigation system (PPP/INS) is proposed. At first, a reference star map is generated in combination with the distortion model of the fish-eye camera based on the position and attitude information from the PPP/INS. Then the star points are extracted in a specific neighbourhood of the reference star points. Subsequently, the extracted star points are individually tested and identified according to angular distance error. Finally, the real-time precise attitude is determined based on the star-ID results. Experimental results show that, 270–310 stars can be identified in a fish-eye star map with an average time of 0.03 s if the initial attitude error is smaller than 1.5° and an attitude determination accuracy better than 10″ can be achieved by support from PPP/INS.
Customer survey data is critical to supporting customer preference modeling in engineering design. We present a framework of information retrieval and survey design to ensure the collection of quality customer survey data for analyzing customers’ preferences in their consideration-then-choice decision-making and the related social impact. The utility of our approach is demonstrated through the survey design for customers in the vacuum cleaner market. Based on the data, we performed descriptive analysis and network-based modeling to understand customers’ preferences in consideration and choice.
Trace fossils record foraging behaviors, the search for resources in patchy environments, of animals in the rock record. Quantification of the strength, density, and nature of foraging behaviors enables the investigation of how these may have changed through time. Here, we present a novel approach to explore such patterns using spatial point process analyses to quantify the scale and strength of ichnofossil spatial distributions on horizontal bedding planes. To demonstrate the utility of this approach, we use two samples from the terminal Ediacaran Shibantan Member in South China (between 551 and 543 Ma) and the early Cambrian Nagaur Sandstone in northwestern India (between 539 and 509 Ma). We find that ichnotaxa on both surfaces exhibited significant nonhomogeneous lateral patterns, with distinct levels of heterogeneity exhibited by different types of trace fossils. In the Shibantan, two ichnotaxa show evidence for mutual positive aggregation over a shared resource, suggesting the ability to focus on optimal resource areas. Trace fossils from the Nagaur Sandstone exhibit more sophisticated foraging behavior, with greater niche differentiation. Critically, mark correlation functions highlight significant spatial autocorrelation of trace fossil orientations, demonstrating the greater ability of these Cambrian tracemakers to focus on optimal patches. Despite potential limitations, these analyses hint at changes in the development and optimization of foraging at the Ediacaran/Cambrian transition and highlight the potential of spatial point process analysis to tease apart subtle differences in behavior in the trace fossil record.