We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we report a molecular dynamics simulation at constant pressure and constant temperature of the structural phase transition occurring in epitaxial FeSi2 from the fluorite phase (metallic and pseudomorphic) to orthorhombic one (semiconductor and bulk stable). The evolution of the electronic density of states is carefully monitored during the transformation and we can show that the Jahn-Teller coupling between the density of states at the Fermi level and the lattice deformation drives the metal-semiconductor transition.
We report the vibrational spectra of β-FeSi2 calculated by molecular dynamics simulations with a tight binding potential and provide a quantitative confirmation of the anisotropic behaviour found by new Infrared (IR) measurements for small monocrystals This analysis allows for the interpretation of more complex IR results previously found for epitaxial samples.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.