Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:37:31.830Z Has data issue: false hasContentIssue false

Structural Phase Transition from Fluorite to Orthorhombic FeSi2 by Tight Binding Molecular Dynamics

Published online by Cambridge University Press:  10 February 2011

Leo Miglio
Affiliation:
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica dell' Universita di Milano, via Celoria 16, 20133 MILANO, Italy.
Massimo Celino
Affiliation:
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica dell' Universita di Milano, via Celoria 16, 20133 MILANO, Italy. Ente per le Nuove Tecnologie, ENEA, C.R.E. della Casaccia, P.O. 2400, 00100 Roma, Italy.
Valeria Meregalli
Affiliation:
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica dell' Universita di Milano, via Celoria 16, 20133 MILANO, Italy.
Francesca Tavazza
Affiliation:
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica dell' Universita di Milano, via Celoria 16, 20133 MILANO, Italy.
Get access

Abstract

In this paper we report a molecular dynamics simulation at constant pressure and constant temperature of the structural phase transition occurring in epitaxial FeSi2 from the fluorite phase (metallic and pseudomorphic) to orthorhombic one (semiconductor and bulk stable). The evolution of the electronic density of states is carefully monitored during the transformation and we can show that the Jahn-Teller coupling between the density of states at the Fermi level and the lattice deformation drives the metal-semiconductor transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Christensen, N.E., Phys. Rev. B 42, 7148 (1990).Google Scholar
2. Kaenel, H. von, Stalder, R., Sirringhaus, H., Onda, N. , Henz, J., Appl. Surf Sci. 53, 196 (1991); A.L.Vazquez de Parga, J.De la Figuera, COcal R. Miranda, Europhys. Lett. 18, 595 (1992); Le Thanh Vinh, J.Chevrier J.Derrien, Phys. Rev. B 46, 15946 (1992); H.Ch.Schaefer, B Roesen, H.Moritz, A.Rizzi, B.Lengeler, H.Luth, D.Gerthsen, Appl. Phys. Lett. 62, 2271 (1993),Google Scholar
3. Miglio, Leo and Malegori, Giovanna, Phys. Rev. B 52, 1448 (1995).Google Scholar
4. Miglio, Leo, Tavazza, Francesca and Malegori, Giovanna, Appl. Phys. Lett. 67, (1995).Google Scholar
5. Kaenel, H. von, Schwarz, C., Goncalves-Conto, S., Mueller, E., Miglio, L., Tavazza, F. and Malegori, G., Phys. Rew. Lett. 74, 1163 (1995).Google Scholar
6. Slater, J.C. and Koster, G.F., Phys. Rev. B 94, 1498 (1954).Google Scholar
7. Harrison, W.A., Electronic Structure and the Properties of Solids (W.H. Freeman Company, San Francisco 1980).Google Scholar
8. Miglio, Leo, Celino, Massimo, Meregalli, Valeria and Tavazza, Francesca, unpublished.Google Scholar
9. Maeder, K.A., Kaenel, H. von and Baldereschi, A., Phys. Rev B 48, 4364 (1993).Google Scholar