We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Propagation of fluid-filled fractures by fluid buoyancy is important in a variety of settings, from magmatic dykes and veins to water-filled crevasses in glaciers. Industrial hydro-fracturing utilises fluid-driven fractures to increase the permeability of rock formations, but few studies have quantified the effect of buoyancy on fracture pathways in this context. Analytical approximations for the buoyant ascent rate facilitate observation-based inference of buoyant effects in natural and engineered systems. Such analysis exists for two-dimensional fractures, but real fractures are three-dimensional (3-D). Here we present novel analysis to predict the buoyant ascent speed of 3-D fractures containing a fixed-volume batch of fluid. We provide two estimates of the ascent rate: an upper limit applicable at early time, and an asymptotic estimate (proportional to $t^{-2/3}$) describing how the speed decays at late time. We infer and verify these predictions by comparison with numerical experiments across a range of scales and analogue experiments on liquid oil in solid gelatine. We find the ascent speed is a function of the fluid volume, density, viscosity and the elastic parameters of the host medium. Our approximate solutions predict the ascent rate of fluid-driven fractures across a broad parameter space, including cases of water injection in shale and magmatic dykes. Our results demonstrate that in the absence of barriers or fluid loss, both dykes and industrial hydro-fractures can ascend by buoyancy over a kilometre within a day. We infer that barriers and fluid loss must cause the arrest of ascending fractures in industrial settings.
Basal crevasses are macroscopic structural discontinuities at the base of ice sheets and glaciers that arise by fracture. Motivated by observations and by the mechanics of elastic fracture, we hypothesise that spatial variations in basal stress (in the presence of basal water pressure) can promote and localise basal crevassing. We quantify this process in the theoretical context of linear elastic fracture mechanics. We develop a model evaluating the effect of shear-stress variation on the growth of basal crevasses. Our results indicate that sticky patches promote the propagation of basal crevasses, increase their length of propagation into the ice and, under some conditions, give them curved trajectories that incline upstream. A detailed exploration of the parameter space is conducted to gain a better understanding of the conditions under which sticky-patch-induced basal crevassing is expected beneath ice sheets and glaciers.
To evaluate 3 formulations of copper (Cu)-based self-sanitizing surfaces for antimicrobial efficacy and durability over 1 year in inpatient clinical areas and laboratories.
Design:
Randomized control trial.
Setting:
We assessed 3 copper formulations: (1) solid alloy 80% Cu–20% Ni (integral copper), (2) spray-on 80% Cu–20% Ni (spray-on) and (3) 16% composite copper-impregnated surface (CIS). In total, 480 coupons (1 cm2) of the 3 products and control surgical grade (AISI 316) stainless steel were inserted into gaskets and affixed to clinical carts used in patient care areas (including emergency and maternity units) and on microbiology laboratory bench work spaces (n = 240). The microbial burden and assessment of resistance to wear, corrosion, and material compatibility were determined every 3 months. Participants included 3 tertiary-care Canadian adult hospital and 1 pediatric-maternity hospital.
Results:
Copper formulations used on inpatient units statistically significantly reduced bacterial bioburden compared to stainless steel at months 3 and 6. Only the integral copper product had significantly less bacteria than stainless steel at month 12. No statistically significant differences were detected in microbial burden between copper formulations and stainless-steel coupons on microbiology laboratory benches where bacterial counts were low overall. All mass changes and corrosion rates of the formulations were acceptable by engineering standards.
Conclusions:
Copper surfaces vary in their antimicrobial efficacy after 1 year of hospital use. Frequency of cleaning and disinfection influence the impact of copper; the greatest reduction in microbial bioburden occurred in clinical areas compared to the microbiology laboratory where cleaning and disinfection were performed multiple times daily.
To investigate whether amnestic mild cognitive impairment (aMCI) identified with visual memory tests conveys an increased risk of Alzheimer’s disease (risk-AD) and if the risk-AD differs from that associated with aMCI based on verbal memory tests.
Participants:
4,771 participants aged 70.76 (SD = 6.74, 45.4% females) from five community-based studies, each a member of the international COSMIC consortium and from a different country, were classified as having normal cognition (NC) or one of visual, verbal, or combined (visual and verbal) aMCI using international criteria and followed for an average of 2.48 years. Hazard ratios (HR) and individual patient data (IPD) meta-analysis analyzed the risk-AD with age, sex, education, single/multiple domain aMCI, and Mini-Mental State Examination (MMSE) scores as covariates.
Results:
All aMCI groups (n = 760) had a greater risk-AD than NC (n = 4,011; HR range = 3.66 – 9.25). The risk-AD was not different between visual (n = 208, 17 converters) and verbal aMCI (n = 449, 29 converters, HR = 1.70, 95%CI: 0.88, 3.27, p = 0.111). Combined aMCI (n = 103, 12 converters, HR = 2.34, 95%CI: 1.13, 4.84, p = 0.023) had a higher risk-AD than verbal aMCI. Age and MMSE scores were related to the risk-AD. The IPD meta-analyses replicated these results, though with slightly lower HR estimates (HR range = 3.68, 7.43) for aMCI vs. NC.
Conclusions:
Although verbal aMCI was most common, a significant proportion of participants had visual-only or combined visual and verbal aMCI. Compared with verbal aMCI, the risk-AD was the same for visual aMCI and higher for combined aMCI. Our results highlight the importance of including both verbal and visual memory tests in neuropsychological assessments to more reliably identify aMCI.
Certain geological features have been interpreted as evidence of channelized magma flow in the mantle, which is a compacting porous medium. Aharonov et al. (J. Geophys. Res., vol. 100 (B10), 1995, pp. 20433–20450) developed a simple model of reactive porous flow and numerically analysed its instability to channels. The instability relies on magma advection against a chemical solubility gradient and the porosity-dependent permeability of the porous host rock. We extend the previous analysis by systematically mapping out the parameter space. Crucially, we augment numerical solutions with asymptotic analysis to better understand the physical controls on the instability. We derive scalings for the critical conditions of the instability and analyse the associated bifurcation structure. We also determine scalings for the wavelengths and growth rates of the channel structures that emerge. We obtain quantitative theories for and a physical understanding of, first, how advection or diffusion over the reactive time scale sets the horizontal length scale of channels and, second, the role of viscous compaction of the host rock, which also affects the vertical extent of channelized flow. These scalings allow us to derive estimates of the dimensions of emergent channels that are consistent with the geologic record.
Objectives: The aim of this study was to identify natural subgroups of older adults based on cognitive performance, and to establish each subgroup’s characteristics based on demographic factors, physical function, psychosocial well-being, and comorbidity. Methods: We applied latent class (LC) modeling to identify subgroups in baseline assessments of 1345 Einstein Aging Study (EAS) participants free of dementia. The EAS is a community-dwelling cohort study of 70+ year-old adults living in the Bronx, NY. We used 10 neurocognitive tests and 3 covariates (age, sex, education) to identify latent subgroups. We used goodness-of-fit statistics to identify the optimal class solution and assess model adequacy. We also validated our model using two-fold split-half cross-validation. Results: The sample had a mean age of 78.0 (SD=5.4) and a mean of 13.6 years of education (SD=3.5). A 9-class solution based on cognitive performance at baseline was the best-fitting model. We characterized the 9 identified classes as (i) disadvantaged, (ii) poor language, (iii) poor episodic memory and fluency, (iv) poor processing speed and executive function, (v) low average, (vi) high average, (vii) average, (viii) poor executive and poor working memory, (ix) elite. The cross validation indicated stable class assignment with the exception of the average and high average classes. Conclusions: LC modeling in a community sample of older adults revealed 9 cognitive subgroups. Assignment of subgroups was reliable and associated with external validators. Future work will test the predictive validity of these groups for outcomes such as Alzheimer’s disease, vascular dementia and death, as well as markers of biological pathways that contribute to cognitive decline. (JINS, 2018, 24, 511–523)
In laboratory experiments that impose shear deformation on partially molten aggregates of initially uniform porosity, melt segregates into high-porosity sheets (bands in cross-section). The bands emerge at $15^{\circ }$–$20^{\circ }$ to the shear plane. A model of viscous anisotropy can explain these low angles whereas previous simpler models have failed to do so. The anisotropic model is complex, however, and the reason that it produces low-angle bands has not been understood. Here we show that there are two mechanisms: (i) suppression of the well-known tensile instability, and (ii) creation of a new shear-driven instability. We elucidate these mechanisms using linearised stability analysis in a coordinate system that is aligned with the perturbations. We consider the general case of anisotropy that varies dynamically with deviatoric stress, but approach it by first considering uniform anisotropy that is imposed a priori and showing the difference between static and dynamic cases. We extend the model of viscous anisotropy to include a strengthening in the direction of maximum compressive stress. Our results support the hypothesis that viscous anisotropy is the cause of low band angles in experiments.
THIS book is a team effort, driven by a shared desire to illuminate and celebrate the world's great classical traditions. Its ancestry as a piece of crosscultural musical analysis goes back a thousand years, to the ‘science of music’ of the medieval Arab theorists. Its European precursors include the sixteenthcentury Swiss theologian Jean de Léry, who notated antiphonal singing in Brazil, and the Moldavian polymath Prince Dimitrie Cantemir (1673–1723) who was enslaved by the Ottomans in Istanbul, became a de facto Turkish composer, and created the first notation for Turkish makam; also Captain James Cook, who made detailed descriptions of the music and dance of Pacific islanders in 1784. Meanwhile Chinese music was being admiringly analysed by French Jesuit missionaries – Chinese theorists had beaten their European counterparts in the race to solve the mathematics of equal temperament – and other Frenchmen were investigating the music of the Arab world. While serving on Napoleon Bonaparte's Egyptian campaign, Guillaume-André Villoteau made studies of Arab folk and art music, before going on to contrast those with the music of Greece and Armenia; his theories were then contested by the French composer Francesco Salvador-Daniel, who after a twelve-year musical sojourn in Algeria concluded, among other things, that Arab and Greek modes were one and the same. Long before ‘ethnomusicology’ was born in academe, the game was well established.
In recent years the ethnomusicologists’ findings have been magisterially presented in two great publications: in the ten massive volumes of the Garland Encyclopedia of World Music, and scattered through the twenty-nine volumes of the New Grove Dictionary of Music and Musicians. But our book is, we believe, the first panoptic survey of the world's classical musics (I explain in the Introduction why we have settled on that somewhat contentious adjective). Although much of its information may also be found in Grove and Garland – many of its writers were contributors to, or editors on, those projects – its tight focus permits presentation in a single volume, rather than scattered through a six-foot shelf of tomes.
As editor I am deeply indebted to my writers, who have patiently put their chapters through numerous drafts in pursuit of non-academic accessibility, while in no way traducing their (often very complicated) subject-matter. I must particularly thank Terry Miller, whose resourceful problem-solving assistance has extended far beyond his own signed contributions; also his colleague Andrew Shahriari, for additional information on Persian classical music.
What is classical music? This book answers the question in a manner never before attempted, by presenting the history of fifteen parallel traditions, of which Western classical music is just one. Eachmusic is analysed in terms of its modes, scales, and theory; its instruments, forms, and aesthetic goals; its historical development, golden age, and condition today; and the conventions governing its performance. The writers are leading ethnomusicologists, and their approach is based on the belief that music is best understood in the context of the culture which gave rise to it . By including Mande and Uzbek-Tajik music - plus North American jazz - in addition to the better-known styles of the Middle East, the Indian sub-continent, the Far East, and South-East Asia, this book offers challenging new perspectives on the word 'classical'. It shows the extent to which most classical traditions are underpinned by improvisation, and reveals the cognate origins of seemingly unrelated musics; it reflects the multifarious ways in which colonialism, migration, and new technology have affected musical development, and continue to do today. With specialist language kept to a minimum, it's designed to help both students and general readers to appreciate musical traditions which may be unfamiliar to them, and to encounter the reality which lies behind that lazy adjective 'exotic'.
MICHAEL CHURCH has spent much of his career in newspapers as a literary and arts editor; since 2010 he has been the music and opera critic of The Independent. From 1992 to 2005 he reported on traditional musics all over the world for the BBC World Service; in 2004, Topic Records released a CD of his Kazakh field recordings and, in 2007, two further CDs of his recordings in Georgia and Chechnya.
Contributors: Michael Church, Scott DeVeaux, Ivan Hewett, David W. Hughes, Jonathan Katz, Roderic Knight, Frank Kouwenhoven, Robert Labaree, Scott Marcus, Terry E. Miller, Dwight F.Reynolds, Neil Sorrell, Will Sumits, Richard Widdess, Ameneh Youssefzadeh
Longitudinal administration of neuropsychological instruments are often used to assess age-related changes in cognition. Informative loss to follow-up may bias the results of these studies. Herein, we use auxiliary data to adjust for informative loss to follow-up. In the Einstein Aging Study, memory was assessed annually in a community sample of adults age 70+, free of dementia at baseline, using the free recall from the Free and Cued Selective Reminding Test, and via telephone using the Memory Impairment Screen for Telephone (the auxiliary data). Joint linear mixed models were used to assess how the effect of the APOE ε4 genotype may be affected by informative missingness in the in-person data. A total of 620 EAS participants contributed 2085 person years of follow-up to the analyses. Memory decline rates estimated in joint models were 19% greater in ε4 negative participants and 27% greater in ε4 positive participants compared to traditional approaches; the effect of APOE ε4 on memory decline was 37% greater. Joint modeling methods can help address bias caused by informative missing data in the estimation of the effect of risk factors on cognitive change, and may be applicable to a broader range of outcomes in longitudinal aging studies. (JINS, 2014, 20, 1–6)