We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Maternal gestational weight gain (GWG) is an important determinant of infant birth weight, and having adequate total GWG has been widely recommended. However, the association of timing of GWG with birth weight remains controversial. We aimed to evaluate this association, especially among women with adequate total GWG. In a prospective cohort study, pregnant women’s weight was routinely measured during pregnancy, and their GWG was calculated for the ten intervals: the first 13, 14–18, 19–23, 24–28, 29–30, 31–32, 33–34, 35–36, 37–38 and 39–40 weeks. Birth weight was measured, and small-for-gestational-age (SGA) and large-for-gestational-age were assessed. Generalized linear and Poisson models were used to evaluate the associations of GWG with birth weight and its outcomes after multivariate adjustment, respectively. Of the 5049 women, increased GWG in the first 30 weeks was associated with increased birth weight for male infants, and increased GWG in the first 28 weeks was associated with increased birth weight for females. Among 1713 women with adequate total GWG, increased GWG percent between 14 and 23 weeks was associated with increased birth weight. Moreover, inadequate GWG between 14 and 23 weeks, compared with the adequate GWG, was associated with an increased risk of SGA (43 (13·7 %) v. 42 (7·2 %); relative risk 1·83, 95 % CI 1·21, 2·76). Timing of GWG may influence infant birth weight differentially, and women with inadequate GWG between 14 and 23 weeks may be at higher risk of delivering SGA infants, despite having adequate total GWG.
Hyperhomocysteinaemia (HHcy) is associated with all-cause mortality in some disease states. However, the correlation between HHcy and the risk of mortality in the general population has rarely been researched. We aimed to evaluate the association between HHcy and all-cause and cause-specific mortality among adults in the USA. This study analysed data from the National Health and Nutrition Examination Survey database (1999–2002 survey cycle). A multivariable Cox regression model was built to evaluate the correlation between HHcy and all-cause and cause-specific mortality. Smooth curve fitting was used to analyse their dose-dependent relationship. A total of 8442 adults aged 18–70 years were included in this study. After a median follow-up period of 14·7 years, 1007 (11·9 %) deaths occurred including 197 CVD-related deaths, 255 cancer-related deaths and fifty-eight respiratory disease deaths. The participants with HHcy had a 93 % increased risk of all-cause mortality (hazard ratio (HR) 1·93; 95 % CI (1·48, 2·51)), 160 % increased risk of CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)) and 82 % increased risk of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) compared with those without HHcy. For unmeasured confounding, E-value analysis proved to be robust. In conclusion, HHcy was associated with high risk of all-cause and cause-specific (CVD, cancer) mortality among adults aged below 70 years.
Dynamics of two-dimensional flow past a rigid flat plate with a trailing closed flexible filament acting as a deformable afterbody are investigated numerically by an immersed boundary-lattice Boltzmann method for the fluid flow and a finite element method for the filament motion. The effects of Reynolds number ($Re$) and length ratio ($Lr$) on the flow patterns and dynamics of the rigid-flexible coupling system are studied. Based on our numerical results, five typical state modes have been identified in $Lr\unicode{x2013}Re$ plane in terms of the filament shape and corresponding dynamics, i.e. static deformation, micro-vibration, multi-frequency flapping, periodic flapping and chaotic flapping modes, respectively. Benefiting from the passive flow control by using the flexible filament as a deformable afterbody, the coupled system may enjoy a significant drag reduction (up to $22\,\%$) compared with bare plate scenarios ($Lr=1$). Maximum drag reduction achieved at $L_{c,{min}} \in [1.8, 2]$ is often accompanied by the onset of the system state transition. The flow characteristic and its relation to the change in hydrodynamic drag are further explored in order to reveal the underlying mechanisms of the counterintuitive dynamical behaviour of the coupled system. The scaling laws for the form drag and the friction drag, which arise from the pressure and viscous effects, respectively, are proposed to estimate the overall drag acting on the system. The results obtained in the present study may shed some light on understanding the dynamical behaviour of rigid-flexible coupling systems.
N-acetylcysteine (NAC) possesses a strong capability to ameliorate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice, but the underlying mechanism is still unknown. Our study aimed to clarify the involvement of long non-coding RNA (lncRNA) in the beneficial effects of NAC on HFD-induced NAFLD. C57BL/6J mice were fed a normal-fat diet (10 % fat), a HFD (45 % fat) or a HFD plus NAC (2 g/l). After 14-week of intervention, NAC rescued the deleterious alterations induced by HFD, including the changes in body and liver weights, hepatic TAG, plasma alanine aminotransferase, plasma aspartate transaminase and liver histomorphology (haematoxylin and eosin and Oil red O staining). Through whole-transcriptome sequencing, 52 167 (50 758 known and 1409 novel) hepatic lncRNA were detected. Our cross-comparison data revealed the expression of 175 lncRNA was changed by HFD but reversed by NAC. Five of those lncRNA, lncRNA-NONMMUT148902·1 (NO_902·1), lncRNA-XR_001781798·1 (XR_798·1), lncRNA-NONMMUT141720·1 (NO_720·1), lncRNA-XR_869907·1 (XR_907·1), and lncRNA-ENSMUST00000132181 (EN_181), were selected based on an absolute log2 fold change value of greater than 4, P-value < 0·01 and P-adjusted value < 0·01. Further qRT-PCR analysis showed the levels of lncRNA-NO_902·1, lncRNA-XR_798·1, and lncRNA-EN_181 were decreased by HFD but restored by NAC, consistent with the RNA sequencing. Finally, we constructed a ceRNA network containing lncRNA-EN_181, 3 miRNA, and 13 mRNA, which was associated with the NAC-ameliorated NAFLD. Overall, lncRNA-EN_181 might be a potential target in NAC-ameliorated NAFLD. This finding enhanced our understanding of the biological mechanisms underlying the beneficial role of NAC.
Cap-shaped skeletal fossils are the earliest undisputed body fossils of mollusks appearing in the basal Cambrian. A study on the morphometry of cap-shaped fossils from the Nanjiang area (North Sichuan, China) is undertaken to understand the origin and evolution of the early mollusks. The distribution of these fossil cap-shaped mollusks indicates a stepwise increase in their diversity during the early Cambrian. Maikhanella Zhegallo in Voronin et al., 1982 co-occuring with the spinose sclerites of siphogonuchitids, is regarded as the earliest scleritized mollusk. It is followed by other maikhanellids, e.g., Purella Missarzhevsky, 1974 and Yunnanopleura Yu, 1987, which co-occur with the earliest univalved helcionellids, e.g., Igorella Missarzhevsky in Rozanov et al., 1969. Cluster analysis of their morphometric characteristics shows that the Maikhanella group is similar to the Purella and Yunnanopleura groups, but is less comparable with univalved helcionellids. The maikhanellids are interpreted as representatives of the stem group Aculifera, although it remains uncertain if one or two larger cap-shaped shell plates were present on the elongate slug-like body, comparable to those of Halkieria Poulsen, 1967 or Orthrozanclus Conway Morris and Caron, 2007. Maikhanellids are characterized by the prominent protrusions or scales on the cap-shaped shell plates arranged in a concentric pattern around the shell apex. Evolutionarily, the protrusions or scales are reduced in younger strata, whereas subsequently a typically concentric ornament developed, the cap-shaped shell plates developed higher profiles, and the apical region became increasingly bare of scales. Meanwhile, the cap-shaped shell plates gradually evolved into a helcionellid-like appearance with an anteroposteriorly inclined apex. The morphological evolution of the earliest sclerotized mollusks reflects biotic evolution and environmental adaption among the stem-group mollusks during the early Cambrian.
Background: Singapore General Hospital (SGH) is the largest acute tertiary-care hospital in Singapore. Healthcare workers (HCWs) are at risk of acquiring COVID-19 in both the community and workplaces. SGH has a robust exposure management process including prompt contact tracing, immediate ring fencing, lock down of affected cubicles or single room isolation for patient contacts, and home isolation orders for staff contacts of COVID-19 cases during the containment phase of the pandemic. Contacts were also placed on enhanced surveillance with PCR testing on days 1 and 4 as well as daily antigen rapid tests (ARTs) for 10 days after exposure. Here, we describe the characteristic of HCWs with COVID-19 during the third wave of the COVID-19 pandemic. Methods: This retrospective observational study included all SGH HCWs who acquired COVID-19 during the third wave (ie, the 18-week period from September 1 to December 31, 2021) of the COVID-19 pandemic. Univariate analysis was used to compare characteristics of work-associated infection (WAI) and community-acquired infection (CAI) among HCWs. Results: Among a workforce of >10,000 at SGH, 335 HCWs acquired COVID-19 during study period. CAI (exposure to known clusters or household contact) accounted for 111 HCW infections (33.1%). Also, 48 HCWs (14.3%) had a WAI (ie, acquired at their work places where there was no patient contact). Among WAsI, only 5 HCWs had hospital-acquired infection (confirmed by phylogenetic analysis). The sources of exposure for the remaining 176 HCWs were unknown. Weekly incidence of COVID-19 among HCWs was comparable to the epidemiology curve of all cases in Singapore (Fig. 1 and 2). The mean age of HCWs with COVID-19 was 39.6 years, and most were women. At the time of positive SARS-CoV-2 PCR test, 223 HCWs were symptomatic, and 67 (20.0%) of them had comorbidities. Only 16 HCWs (4.8%) required hospitalization, and all recovered fully with no mortality (Table 1). Being female was associated with community COVID-19 acquisition (OR, 4.6, P Conclusions: During the thrid wave of the COVID-19 pandemic, a higher percentage of HCWs at SGH acquired the infection from the community than from the workplace. Safe management measures, such as universal masking, social distancing, and robust exposure management processes including prompt contact tracing and environmental disinfection, can reduce the risk of COVID-19 in the hospital work environment.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
The propulsion of a pitching flexible plate in a uniform flow is investigated numerically. The effects of bending stiffness ($K$), pitching amplitude ($A_L$) and frequency ($St$) on the wake patterns, thrust generations and propulsive performances of the fluid–plate system are analysed. Four typical wake patterns, i.e. von Kármán, reversed von Kármán, deflected and chaotic wakes, emerge from various kinematics, and the $St-A_L$ wake maps are given for various $K$. The drag-to-thrust transitions (DTT) and the wake transitions (WT) between the von Kármán and reversed von Kármán wakes are examined. Results indicate that the WT and DTT boundaries can be scaled by the chord-averaged distance of travel, $\mathcal {L}$, which leads to $\mathcal {L}\times St \approx 1$ and $\mathcal {L}\times St \approx 1.2$, respectively. Further, the resonance mechanism for the performance enhancement is revealed and confirmed in a wide range of parameters. The dimensionless average speed of plate, $\mathcal {U^*}\left (=\mathcal {L}\times St\right )$, is adopted merely to characterize the propulsive performances. For the first time, the $\mathcal {U^*}$-based scaling laws for the thrust and power are revealed in pitching rigid and flexible plates for various $A_L$ and $St$. This study may deepen our understanding of biological swimming and flying, and provide a guide for bionic design.
Sporadic clusters of healthcare-associated coronavirus disease 2019 (COVID-19) occurred despite intense rostered routine surveillance and a highly vaccinated healthcare worker (HCW) population, during a community surge of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) B.1.617.2 δ (delta) variant. Genomic analysis facilitated timely cluster detection and uncovered additional linkages via HCWs moving between clinical areas and among HCWs sharing a common lunch area, enabling early intervention.
The effect of hydrodynamic interactions on the collective locomotion of fish schools is still poorly understood. In this paper, the flow-mediated organization of two tandem flapping foils, which are free in both the longitudinal and lateral directions, is numerically studied. It is found that the tandem formation is unstable for two foils when they can self-propel in both the longitudinal and lateral directions. Three types of resultant regular formations are observed, i.e. semi-tandem formation, staggered formation and transitional formation. Which type of regular formation occurs depends on the flapping parameters and the initial longitudinal distance between the two foils. Moreover, there is a threshold value of the cycle-averaged longitudinal distance (which is approximately 0.55) below which both velocity enhancement and efficiency augmentation can be achieved by two foils in regular formations. The results obtained here may shed some light on understanding the emergence of regular formations of fish schools.
Embryo quality determines the success of in vitro fertilization and embryo transfer (IVF-ET) treatment. Biomarkers for the evaluation of embryo quality have some limitations. Apoptosis in cumulus cells (CCs) is important for ovarian function. PTEN (phosphatase and tensin homolog) is a well known tumour suppressor gene that functions as a mediator of apoptosis and is crucial for mammalian reproduction. In the present study, we analyzed the expression level of PTEN in human CCs and aimed to investigate its association with embryo developmental competence in IVF treatment cycles. The PTEN mRNA level in CCs was measured using real-time fluorescence quantitative PCR. The association of the differential expression of PTEN with embryo quality was analyzed. Our data showed that PTEN mRNA levels were significantly decreased in CCs surrounding mature oocytes compared with immature oocytes. Similar changes were found in the analysis of fertilization and blastocyst formation. The speculation that the measurement of PTEN mRNA levels in human CCs would provide a useful tool for selecting oocytes with greater chances to implant into the uterus needs to be further verified through single-embryo transfer in the future. The proapoptotic mechanism of PTEN in human reproduction needs to be further studied.
To describe OXA-48–like carbapenem-producing Enterobacteriaceae (CPE) outbreaks at Singapore General Hospital between 2018 and 2020 and to determine the risk associated with OXA-48 carriage in the 2020 outbreak.
Design:
Outbreak report and case–control study.
Setting:
Singapore General Hospital (SGH) is a tertiary-care academic medical center in Singapore with 1,750 beds.
Methods:
Active surveillance for CPE is conducted for selected high-risk patient cohorts through molecular testing on rectal swabs or stool samples. Patients with CPE are isolated or placed in cohorts under contact precautions. During outbreak investigations, rectal swabs are repeated for culture. For the 2020 outbreak, a retrospective case–control study was conducted in which controls were inpatients who tested negative for OXA-48 and were selected at a 1:3 case-to-control ratio.
Results:
Hospital wide, the median number of patients with healthcare-associated OXA-48 was 2 per month. In the 3-year period between 2018 and 2020, 3 OXA-48 outbreaks were investigated and managed, involving 4 patients with Klebsiella pneumoniae in 2018, 55 patients with K. pneumoniae or Escherichia coli in 2019, and 49 patients with multispecies Enterobacterales in 2020. During the 2020 outbreak, independent risk factors for OXA-48 carriage on multivariate analysis (49 patients and 147 controls) were diarrhea within the preceding 2 weeks (OR, 3.3; 95% CI, 1.1–10.7; P = .039), contact with an OXA-48–carrying patient (OR, 8.7; 95% CI, 1.9–39.3; P = .005), and exposure to carbapenems (OR, 17.2; 95% CI, 2.2–136; P = .007) or penicillin (OR, 16.6; 95% CI, 3.8–71.0; P < .001).
Conclusions:
Multispecies OXA-48 outbreaks in our institution are likely related to a favorable ecological condition and selective pressure exerted by antimicrobial use. The integration of molecular surveillance epidemiology of the healthcare environment is important in understanding the risk of healthcare–associated infection to patients.
Treatment-resistant schizophrenia (TRS) and non-TRS may be associated with different dopaminergic and glutamatergic regulations. The concept of dysregulated glutamatergic concentrations in specific brain regions remains controversial. Herein, we aimed to assess (i) the distribution of the glutamatergic concentration in the brain, (ii) the association between working memory (WM) differences in TRS and non-TRS patients, and (iii) whether an alteration in the glutamate (Glu) level is associated with WM.
Methods
The participants included 38 TRS patients, 35 non-TRS patients, and 19 healthy controls (HCs), all of whom underwent 1.5-Tesla proton magnetic resonance spectroscopy of anterior cingulate cortex (ACC) and medial prefrontal cortex (MPFC). The ratios of glutamatergic neurometabolites to N-acetylaspartate + N-acetyl aspartylglutamate (NAAx) were calculated. Cognitive function was assessed using the Wechsler Adult Intelligence Scales, 4th Edition, which included the working memory index (WMI).
Result
The TRS patients had a higher glutamate + glutamine (Glx)/NAAx ratio compared to the non-TRS patients and HCs in the ACC, but this was not significantly different in the MPFC. WM was negatively correlated with Glx/NAAx in the ACC among the non-TRS patients, but not in the TRS patients or HCs.
Conclusions
Our findings were consistent with most studies indicating that the glutamatergic concentration in the ACC plays important roles in the classification of TRS and cognition. Our results may provide potential evidence for predictors and treatment response biomarkers in TRS patients. Further research is needed to probe the value using the relationship between Glu and WM as a potential prognostic predictor of schizophrenia.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
Prolonged parturition duration has been widely demonstrated to be a risk factor for incidence of stillbirth. This study evaluated the supply of dietary fibre on the parturition duration, gut microbiota and metabolome using sows as a model. A total of 40 Yorkshire sows were randomly given diet containing normal level of dietary fibre (NDF, 17·5 % dietary fibre) or high level of dietary fibre (HDF, 33·5 % dietary fibre). Faecal microbiota profiled with 16S rRNA amplicon sequencing, SCFA and metabolome in the faeces and plasma around parturition were compared between the dietary groups. Correlation analysis was conducted to further explore the potential associations between specific bacterial taxa and metabolites. Results showed that HDF diet significantly improved the parturition process as presented by the shorter parturition duration. HDF diet increased the abundance of the phyla Bacteroidetes and Synergistetes and multiple genera. Except for butyrate, SCFA levels in the faeces and plasma of sows at parturition were elevated in HDF group. The abundances of fifteen and twelve metabolites in the faeces and plasma, respectively, markedly differ between HDF and NDF sows. These metabolites are involved in energy metabolism and bacterial metabolism. Correlation analysis also showed associations between specific bacteria taxa and metabolites. Collectively, our study indicates that the improvement of parturition duration by high fibre intake in late gestation is associated with gut microbiota, production of SCFA and other metabolites, potentially serving for energy metabolism.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
We aimed to investigate the relationship between the neutrophil to lymphocyte ratio (NLR) and nutritional parameters in chronic kidney disease (CKD) patients. In this cross-sectional study, 187 non-dialysis CKD patients were enrolled. Daily dietary energy intake (DEI) and daily dietary protein intake (DPI) were assessed by 3-d dietary records. Protein-energy wasting (PEW) was defined as Subjective Global Assessment (SGA) class B and C. Spearman correlation analysis, logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed. The median NLR was 2·51 (1·83, 3·83). Patients with CKD stage 5 had the highest NLR level. A total of 19·3 % (n 36) of patients suffered from PEW. The NLR was positively correlated with SGA and serum P, and the NLR was negatively correlated with BMI, waist and hip circumference, triceps skinfold thickness, mid-arm muscle circumference, DPI and Hb. Multivariate logistic regression analysis adjusted for DPI, DEI, serum creatinine, blood urea nitrogen, uric acid and Hb showed that a high NLR was an independent risk factor for PEW (OR = 1·393, 95 % CI 1·078, 1·800, P = 0·011). ROC analysis showed that an NLR ≥ 2·62 had the ability to identify PEW among CKD patients, with a sensitivity of 77·8 %, a specificity of 62·3 % and an AUC of 0·71 (95 % CI 0·63, 0·81, P < 0·001). The NLR was closely associated with nutritional status. NLR may be an indicator of PEW in CKD patients.
Efficiently solving inverse kinematics (IK) of robot manipulators with offset wrists remains a challenge in robotics due to noncompliance with Pieper criteria. In this paper, an improved method to solve the IK for 6-DOF robot manipulators with offset wrists is proposed. This method is based on the Newton iteration technique, but it does not require a selection of initial estimation of joint variables. The solution is divided into two parts: the first part is to reconstruct a simplified structure with analytical IK solution, and the second part is to obtain a numerical solution by iteration. Further, a robot manipulator HSR-BR606 with an offset wrist is used as an example to specifically elaborate the mathematical procedure of the method and to investigate the algorithm in terms of accuracy, efficiency, and application of motion planning. A comparative experiment is conducted with a typical IK algorithm, which demonstrates a higher accuracy and shorter calculation time of the proposed method. The mean calculation time for a single IK solution required for this algorithm is only 4% of the comparison algorithm.