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Abstract

Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy
usage in the United States, and similar numbers are being reported from countries around the world. This significant
amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is
crucial that energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of
occupant comfort, health, and safety. Machine learning (ML) has been proven to be an invaluable tool in deriving
important insights fromdata and optimizing various systems. In this work,we review some of themost promisingways
in which ML has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we
provide a brief introduction to the relevant ML paradigms and the components and functioning of each smart building
system we cover. Finally, we discuss the challenges faced while implementing machine learning algorithms in smart
buildings and provide future avenues for research in this field.

Impact Statement

In this work, we review the ways in which Machine Learning (ML) has been leveraged to make buildings smart
and energy-efficient. In doing so, we touch upon traditional methods already in place and how ML-based
solutions often match or outperform them. Our work aims to benefit ML researchers interested in how their
expertise can be applied to the smart building sector, and smart building specialists—researchers whose primary
interests are in energy efficiency, the quality of the indoor environment, the related occupant experience,
advanced control methods, etc.—who wish to solve domain-specific problems using ML. Our work will equip
researchers with a bird’s-eye view of the ML applications in Smart Buildings, enabling them to visualize the
existing interdependencies among different subsystems, and design ML-based implementations for optimizing
energy usage and occupant comfort.

1. Introduction

We spend 90% of our time every day in indoor environments, so buildings substantially influence our
health, well-being, safety, and work and study performance. Also, the energy used in buildings to ensure

©TheAuthor(s), 2024. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Environmental Data Science (2024), 3: e1, 1–32
doi:10.1017/eds.2023.43

https://doi.org/10.1017/eds.2023.43 Published online by Cambridge University Press

https://orcid.org/0000-0002-3335-2622
mailto:hpdas@berkeley.edu
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/eds.2023.43
https://doi.org/10.1017/eds.2023.43


individual safety and comfort is a leading contributor to climate change. It is estimated that in the United
States, buildings (both residential and commercial) are responsible for approximately 40% of primary
energy consumption, 73% of electrical use, and 40% of greenhouse gas emissions (U.S. Department of
Energy—Energy Information Administration, Annual Energy Outlook, 2020). It is of utmost importance
to improve building energy systems to optimize energy usage and thus limit the greenhouse gas emissions
contributed by them, while, at the same time, ensuring an occupant-friendly environment to improve well-
being and productivity. Energy use reductions while maintaining occupant comfort and productivity in
buildings can be an environmentally sustainable, equitable, cost-effective, and scalable approach to
reducing greenhouse gas emissions.

These requirements necessitate bringing to bear some of the latest sensing, computing, and control
technologies into the built environment. It is expected that these technologies, appropriately integrated,
will make the built environment responsive to occupant needs and environmental factors, delivering both
superior occupant experience and unprecedented energy efficiency. In other words, the buildings will be
“Smart”, which in this context refers to the union of “having buildings equipped with Internet-of-Things
(IoT) devices and sensors to collect real-time data such as temperature, humidity, lighting levels, and air
quality” aswell as “having the infrastructure to harness the power of tools such asAI andmachine learning
(ML) to utilize data from buildings for energy efficiency and occupant comfort”.

Additionally, as computing has evolved, ML techniques are being shown to be complementary and, in
many cases, superior to more classical approaches. The latter require accurate models describing the
various aspects of the building and occupant behaviors, and such models are often inaccurate and very
hard to build and maintain. As we will show in this paper, ML techniques often fill this gap.

The smart building ecosystem is illustrated in Figure 1. Occupants constitute the basic building block
of the ecosystem. Being the consumers of the facilities that a building provides, occupants necessitate the
regulation of the building systems to achieve the desired environment. The building comprises structures,
devices, and systems in place to control and maintain the desired environment for the occupants, along
with diagnostic systems to ensure robust operation. The building operation requires energy, which
primarily comes in the form of electricity. The electrical energy is supplied to buildings via a power
distribution system, where, with the advent of smart grids, buildings interact and exchange surplus energy
and other ancillary services with the energy provider and with each other.

In order to improve energy efficiency and occupant comfort, researchers and industry leaders have
attempted to implement intelligent sensing, control, and automation approaches alongside techniques like
incentive design and price adjustment to more effectively regulate energy usage. With the growth of IoT
devices, and the great variety of user-to-device and device-to-device interactions, there is a need for
integration and coordination of the related objectives and actions. Further, in order to derive insights from
the vast amount of data in certain scenarios, and from the limited amount of data in others, ML
applications are proliferating in smart buildings. These ML-driven insights can be used for downstream
tasks such as forecasting, prediction, and control. In this work, we explore the growing application ofML
in smart building systems, and examine how ML-based solutions often match or outperform more
traditional methods.

1.1. Potential audience for this paper

Prior studies related to this paper (Rupp et al., 2015;Wang andHong, 2020; Zhang et al., 2021; Zhao et al.,
2021) mainly focus on review studies in a subdomain. Another line of relevant prior studies include study
ofML applications in smart buildings (Hong et al., 2020), from the viewpoint of an expert/researcher well
aware of the dynamics of smart buildings. In this paper, we summarize and synthesize the research
presented in these publications and provide a breadth-first view in the context of smart and energy-
efficient buildings. Those who will benefit most from this summary are ML researchers interested in how
their expertise can be applied to the smart building sector, and smart building specialists—researchers
whose primary interests are in energy efficiency, the quality of the indoor environment and the related
occupant experience, advanced control methods, occupancy modeling and monitoring, modeling and
simulation, privacy, security, etc.—who wish to solve domain-specific problems using ML.
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For literature search, we used the Google Scholar platform with keywords specific to various sections
presented in this work, as it efficiently indexes and provides research studies at the intersection of multiple
domains,which in our case isMLand smart buildings.Unlikemanyother search engines,we found the above
platform be efficient in scoping literature from journals and conference proceedings, since the destination for
many smart buildings research studies is journals, while in the case of ML, it is academic conferences.

2. Machine Learning

In this section, we briefly cover the fundamentals of someML algorithms andmethods that are commonly
in practice in smart buildings. These ML algorithms can be commonly grouped under supervised,
unsupervised, and reinforcement learning depending on the learning paradigm, i.e., the way a model
gets trained on the available data.We briefly cover the functionalities of the above learning paradigms and
various learningmethods, while placing an emphasis onmethods that we have found particularly useful in
the context of optimizing the performance of the built environment, as detailed in the subsequent section.

2.1. Learning paradigms

2.1.1. Supervised ML
Supervised learning refers to a class of algorithms that learn using data points with known outcomes/
labels. The model is trained using an appropriate learning algorithm (such as linear regression, random
forests, or neural networks) that typically works through some optimization routine to minimize a loss or
error function. The model is trained by feeding it input data as well as correct annotations, whenever
available. If the output of the model is continuous, this process is called regression and if the output is
discrete with finite classes, the process is called classification. Supervised learning has been implemented
for substantial applications in real life, such as image classification/segmentation, natural language
processing, time-series analysis. Since supervised learning requires annotated data, it faces a bottleneck
when labeling is expensive or laborious.

2.1.2. Unsupervised ML
In contrast to supervised learning, unsupervised learning involves models/algorithms that look for
patterns in an unlabeled dataset withminimal human supervision. Some unsupervised learning paradigms
include clustering, which aims to group data into similar categories (clusters); dimensionality reduction,
which aims to find a low-dimensional subspace that captures most of the variation in the data; and
generative modeling, which aims to learn the data distribution in order to generate synthetic data.

Figure 1. A taxonomy of the smart buildings illustrated at three levels: cluster of buildings, single
building, and occupant.
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2.1.3. Reinforcement learning (RL)
RL is a type of agent-based ML where a complex system is controlled through actions that optimize the
system in some manner (Sutton and Barto, 2018). The actions (at) taken based on a probability
distribution pπ at a state (st) and time t seek to optimize the expected sum of rewards rð Þ based on a
policy Jð Þ parameterized by θ; i.e., J θð Þ¼P

st ,at�pπ
r st,atð Þ½ �.

RL is based on the Markov property of systems, where the evolution of system states is determined by
the current state and the subsequent control sequence, and independent of the past states and past control
inputs. Indeed, RL agents might be thought of as Markov decision processes (MDP) with neural nets
serving as function approximators helping to decide which state transitions to attempt. RL is useful in
when actions and environments are simple or data are plentiful. Early examples include backgammon
(Tesauro, 1994), the cart-pole problem, and Atari (Mnih et al., 2013). Recently, much work has been done
to extend RL to broader uses.

RL architectures may be grouped in families with different learning methods; a simple one is policy
gradient.Here, the controller is made up of a single function approximator that maps actions to states. The
model is trained along the gradient of expected reward. One subfamily of policy gradient is the Actor-
Critic that employs two function approximators; the actor estimates actions as in policy gradient, while the
critic estimates the long-term value of the actions; these estimates contribute to the training of the actor
network. An overview of the RL architecture taxonomy is provided in Figure 2.

We now discuss specific classes of algorithms that are commonly used in the smart building domain.

2.2. ML learning methods

2.2.1. Kernel-based methods
Kernel algorithms are designed for analyzing patterns in data from explicit feature vector representations
provided to them. They work by projecting the onto hyperplanes that make the inference easier. Kernel
methods can be used for supervised and unsupervised problems. A commonly used kernel-basedmethod for
classification is the support vector machine (SVM). Another common method in unsupervised settings is
kernelprincipal component analysis (PCA), used for dimensionality reduction in order to facilitate clustering.

2.2.2. Ensemble methods
Ensemble methods combine multiple ML models to produce an optimal model. Common examples
include tree-based algorithms such as decision tree, bagging (bootstrap aggregating), random forest, and
gradient boosting.

Figure 2. A taxonomy of reinforcement learning architectures.
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2.2.3. Deep learning
Deep learning-based methods are usually deployed on extremely large datasets, and they use very
complex artificial neural networks inspired by information processing in biological neurons for applica-
tions in supervised, semisupervised, or unsupervised settings. The neural network architecture depends on
the nature of the available data. For example, convolutional neural networks typically analyze image data,
while recurrent networks are usually applied to textual, natural language or time-series data.

2.2.4. Time-series forecasting methods
Time-series data comprise a sequence of data points indexed by time, such as stock prices, outdoor
temperature, or electricity prices. Time-series analysis is used to extract statistical information about the
data and potentially make predictions about future data points. Wide variety of methods can be used for
time-series analysis and forecasting. Assuming future data have some relation with historically observed
data, linear models such as moving average (MA), auto-regression (AR), and combinations of these can
be used to forecast future data points. Some use cases are in stock price forecasting (Pai and Lin, 2005) and
in supply chain management (Aviv, 2003). Recurrent neural networks, and long short-term memory
(LSTM) networks can also be used for time-series with more complex behaviors.

2.2.5. Physics-based ML
ML models have shown promising results in learning scientific problems that are yet to be well
understood or where it is computationally infeasible with physics-based models. However, pure data-
driven models often require very large datasets, offer limited extrapolation abilities, and are unable to
provide physically consistent results or to offer intuition about the process they aremodeling. On the other
hand, pure physics-based models are often complex, include many uncertain parameters, and may be
either too simplistic or too computationally intensive for the given application. This has led to the
emergence of hybrid models that combine formal domain knowledge withML. These hybrid models may
compensate the weaknesses of pure physics-based models or pure data-driven models, and may be better
able to both extrapolate and provide intuition about the process in question. Coupling physics knowledge
with ML has been used in several areas, including medicine (Costabal et al., 2020; Kissas et al., 2020),
fluid mechanics (Cai et al., 2022), power systems (Misyris et al., 2020), manufacturing (Qi et al., 2019)
etc. It has shown potential in better prediction accuracy using a smaller set of sample data and
generalizability for out-of-sample scenarios.

2.2.6. Learning, dynamics, and control
Traditional control approaches such as system identification (Ljung, 1998) and adaptive control (Ioannou
and Fidan, 2006) have similarities to supervised learning (Ljung et al., 2020) and RL (Matni et al., 2019),
respectively. While some system identification is implicit in all control approaches, as a part of how the
model is formed, adaptive control never rose to the prominence of RL.

Several approaches to model-based RL use control-theoretic methods. Essentially, the problem is split
into two parts: a dynamic model is learned from data, and the model is used to design a controller, with
some variations, with model predictive control being a popular choice. Similarly, in traditional control
applications, learned models are incorporated into modern control synthesis techniques, and standard
methods of proving safety are adjusted to incorporate learned models. A learning-based approach that has
proved to mesh particularly well with this approach uses Gaussian process models (Akametalu et al.,
2014; Umlauft et al., 2017; Wang et al., 2018; Devonport et al., 2020, 2021b). Another point of contact is
the use of statistical guarantees for controllers based on learned models. In RL, statistical guarantees of
correctness such as regret bounds and probably approximately correct (PAC) bounds are used to ensure
that optimal behavior is attained with high probability. By combining these statistical guarantees with
control-theoretic techniques, they can also be used to ensure safety with high probability (Devonport and
Arcak, 2020; Devonport et al., 2021a, 2021b). Since many learned models are statistical in nature,
probabilistic bounds consistent with model accuracy have also been used extensively in recent years
(Matni et al., 2019).
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3. Applications of ML in Smart Buildings

We organize the ML methods we have used in smart building applications by their targeted level of
abstraction, namely at the level of occupants, single building, and a cluster of buildings as shown in
Figure 3. Above applications directly or indirectly lead to enhancements in energy efficiency in buildings,
while ensuring occupant comfort and productivity.

3.1. Thermal comfort

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) defines
thermal comfort as “the condition of the mind that expresses satisfaction with the thermal environment
and is assessed by subjective evaluation” (Standard 55, 2020). We spend more than 90% of time in a day
beingwithin a built environment, where our health, well-being, performance, and energy consumption are
linked to thermal comfort. However, studies show that only 40% of commercial building occupants are
satisfied with their thermal environment (Graham et al., 2021). Ensuring occupants’ thermal comfort
involves understanding of the parameters that affect it, developing and using models to predict thermal
comfort, and controlling heating, ventilation, and air-conditioning (HVAC) systems to achieve occupant
satisfaction. ML has been applied to all of these sectors. In this section, we mainly cover thermal comfort
understanding and prediction. In Section 3.4, we cover the control of the thermal environment in
buildings. Thermal comfort of building occupants has been studied extensively. These models include
traditional ones like the Predicted Mean Vote (PMV) and the adaptive thermal comfortmodels, as well as
the more recent personal comfort models.

Themost widely used thermal comfort model is the PMV, developed by Fanger (1970) based on a set of
experiments in controlled climate chambers. Fanger established a mathematical formula with six input
parameters: air temperature, mean radiant temperature, relative humidity, air velocity, clothing insulation,
and metabolic rate. The PMV model adopts a 7-point scale for its thermal sensation output, with values
ranging from -3 to +3, and indicating cold, cool, slightly cool, neutral, slightly warm, warm, and hot,
respectively. To gauge the level of dissatisfaction of individuals in a space where PMV has been
computed, Fanger proposed a Predicted Percentage of Dissatisfied (PPD) model (Fanger, 1970), that
establishes a quantitative prediction of the percentage of thermally dissatisfied occupants. To complywith
ASHRAE 55 standards, the recommended range for PMVon the 7-point scale is between -0.5 and 0.5.
The PMV model is designed with a uniform and steady-state conditioned environment and does not

Figure 3. Illustration of various applications where machine learning methods can be deployed in smart
buildings, grouped at the cluster of buildings level, the building level, and the occupant level.
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explicitly consider local discomfort, the nonuniformity of the space and dynamic thermal conditions
(Zhao et al., 2021). It has also been developed with data from controlled climate chamber experiments,
which are not necessarily transferable to the varying thermal environments that exist in buildings around
the world (Cheung et al., 2019). Experiments in real buildings showed that the PMV has a low prediction
accuracy (around 33%), whereas the PPD is unreliable as a metric (Cheung et al., 2019).

With the booming development of ML techniques and their versatile applications, researchers have
attempted to develop data-driven approaches using ML to predict thermal comfort. Often, the Fanger’s
features, alone or with additional relevant real and synthetic features, are fed into a data-driven model to
learn the connections between the features and the thermal preference labels (Kim et al., 2018; Liu et al.,
2019). Themodel is later leveraged to predict the same given raw features. Because themodels are trained
to learn directly from the data, and not from a rule that was established using prior experiments, they
perform better as compared to PMV.

Kernel-based approaches have been widely used for thermal sensation/preference prediction. The list
of kernel-based methods popular for thermal comfort prediction includes SVM (Chaudhuri et al., 2018;
Alsaleem et al., 2020; Chai et al., 2020; Liu et al., 2020; Zhou et al., 2020), K-nearest neighbors (KNN)
(Liu et al., 2019; Lu et al., 2019; Pigliautile et al., 2020; Lee and Ham, 2021; Cheung et al., 2022), and
ensemble learning algorithms, such as random forest (RF) (Kim et al., 2018; Liu et al., 2019) and
AdaBoost (Ab). Recently, feed-forward neural networks (Zhai and Soh, 2017; Lu et al., 2019; Das et al.,
2021), and time-series based networks (Chennapragada et al., 2022) have surpassed state-of-the-art
kernel-based models in thermal comfort prediction.

Traditional thermal comfort models, as described above, are developed based on aggregated data from
a large population. So, rather than predicting the thermal comfort of individuals, they were designed to
predict the average thermal comfort of a population, when all its members are exposed to the same
environment. This naturally misses the inevitable and sometimes significant differences in how different
individuals respond to the same thermal environment. A new approach to thermal comfort modeling that
uses personal comfort models instead of the average response of a large population, can be applied to any
building thermal control system (Kim et al., 2018). Personal thermal comfort can adapt to the available
input variables, such as environmental variables (Cheung et al., 2017), occupant behaviors (Kim et al.,
2018), and physiological signals (Liu et al., 2019). Several experiments have been conducted over the
years for population groups varying in terms of environmental and personal conditions. ML algorithms
ranging from kernel-based methods to neural network-based methods have been proposed as the
predictor. For instance, Liu et al. (2019) conducted an experiment to collect physiological signals (skin
temperature, heart rate) of 14 subjects (6 female and 8 male adults) and environmental parameters (air
temperature, relative humidity) for 2–4 weeks (at least 20 h per day). They developed ML-based
predictors of thermal preference for each individual, using synthetic features derived from the above
raw features (e.g., mean heart rate over last 5-min from the survey response time) as the input with RF
being the best predictor. A data-driven method with indoor environment was applied to classify
occupant’s personal thermal preference with temperature and humidity sensors (Laftchiev and Nikovski,
2016). Authors in Sim et al. (2018) developed personal thermal sensation models based on watch-type
sweat rate sensors. Among all theMLmethods, kernel-based algorithms are still themost commonly used
ones. However, other ML approaches are also becoming popular in modeling the complex interactions
that exist between the features without much feature engineering, e.g., time-series prediction (Somu et al.,
2021), artificial neural networks (Das et al., 2021), etc. Better approaches for modeling tabular data in
smart buildings, with a focus on thermal comfort datasets are provided in Das and Spanos (2022a).

Although several studies show high prediction accuracy of thermal comfort with variousMLmethods,
there are still several challenges ahead. A common challenge in designing ML-based thermal comfort
predictors is the issue of class imbalance in data. Almost all of the thermal comfort datasets (Ličina et al.,
2018; Liu et al., 2019) are inherently class-imbalanced, i.e., they have more data belonging to “Prefer
No-Change” than “Prefer Warmer” and “Prefer Cooler” thermal preference classes. Researchers have
tackled this issue by usingweighed loss functions forMLmodels. A related challenge is the overall lack of
sufficient amount of data (Liu et al., 2019). Collecting large amounts of data as required by ML models
from humans via real-world experiments is expensive and cumbersome. Generating synthetic data to
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augment the training dataset is one of the approaches that has been proposed for tackling the above
challenges. Synthetic data generation can be done using classical methods such as SMOTE (Chawla et al.,
2002; Quintana et al., 2020) or using advanced neural network-based generative models (Quintana et al.,
2020; Das et al., 2021; Yoshikawa et al., 2021; Das and Spanos, 2022b).

Another challenge is domain discrepancy. Thermal comfort, as per PMV, is dependent on six major
parameters as described in the beginning of the section or, as per the adaptive thermal comfort model, is
dependent on the outside temperature. However, it also varies from person to person, across climatic
regions and economic conditions. A literature review of personal comfort models concluded that there is a
lack of diversity in terms of building types, climates zone, and participants that are considered in existing
thermal comfort studies (Martins et al., 2022). Under such domain discrepancy, models developed in one
environment, when used in another target environment may lead to low accuracy or misleading
predictions. Also, thermal comfort modeling in general depends largely on self-reporting, which is
inherently unreliable. To deal with the data/label insufficiency challenge, domain adaptation methods
have been proposed to adapt MLmodels from one domain to another. Das et al. (2021) propose a transfer
learning framework, using Adversarial Domain Adaptation (ADA) to develop personal thermal comfort
predictors for target occupants in an unsupervised manner. Gao et al. (2021) propose a transfer learning-
based multilayer perceptron model for domain adaptation across cities.

In summary,MLmodels have proven to improve thermal comfort prediction accuracy and they allow a
wider and more flexible range of input parameters. They can adapt to the available data streams, and they
improve their performance over time. While there are still challenges, there are also many future research
opportunities, as listed in Section 5.

3.2. Occupancy and activity sensing

Occupancy and activity sensing are key aspects for the observability of a human-in-the-loop building
control system. Traditionally, building operation methods that include occupancy as one of their
parameters, such as starting heating/cooling from early morning until late in the evening during weekdays
assuming maximum occupancy during working hours often have static schedules set for the occupancy,
which is far from realistic. Also, how much a building will be occupied depends on several other factors,
such as weather, building type, and holiday schedule. Such static policies may lead to a significant waste
in energy consumption, because the heating/cooling and ventilation levels are set with no regard for the
actual occupancy level. Activity sensing also helps to provide personalized, context-aware services in
buildings, thus enhancing overall satisfaction in buildings while creating a safety net for adverse events
such as falls in elderly homes (Petroşanu et al., 2019).

Occupancy sensing can be performed using both intrusive and nonintrusive methods. Intrusive
methods require the occupants to carry an electronic device whose signature is followed by a central
server to infer occupancy/positioning (Lee et al., 2013; Filippoupolitis et al., 2016; Zou et al., 2016,
2018a, 2018b). However, requiring occupants to constantly carry a device is not reliable. This problem
gets magnified for the case of elderly population. Hence, nonintrusive methods for occupancy sensing are
getting popular. In nonintrusive method, occupancy/activity is detected from data collected from various
sensing modalities, and some ground truth during controlled experiments. Machine learning-based
methods are very effective for nonintrusive occupancy sensing, allowing for the data-driven construction
of a model to map sensor data into an estimate of occupancy.

Nonintrusive methods for occupancy sensing can be divided according to the sensing modalities they
employ. A common choice is video feeds from cameras installed in rooms. Regular cameras have not
found significant usage because of their privacy issue; infrared sensors or thermal cameras have rather
been the choice for occupancy detection. For example, Kraft et al. (2021) use a U-Net-like convolutional
neural network on thermal images to infer occupancy. Other studies employing similar ML methods on
depth cameras are Brackney et al., 2012; Diraco et al., 2015; and Zhao et al., 2019. But, in general,
cameras have other issues such as poor illumination conditions and occlusion. A recent body of work
focuses on occupancy and activity detection from Wi-Fi signals (Zou et al., 2019), because of its
ubiquitous presence, and better privacy guarantees. Zou et al. (2017, 2018c) use Channel State
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Information (CSI) data collected from Wi-Fi sensors (a transmitter and a receiver) and measuring the
shape similarity between adjacent time-series CSI curves to infer the occupancy. They improve the
detection mechanism in Zou et al. (2019) by using convolutional neural networks on the CSI heatmaps to
detect human gestures. Anothermodality that is used to detect occupancy is CO2 data in a room.A number
of studies (Rahman and Han, 2017; Zuraimi et al., 2017; Arendt et al., 2018;Wei et al., 2022) employML
methods to map the CO2 concentration and occupancy. Finally, studies such as Zou et al. (2019) propose
sensor fusion, where data from multiple sensing modalities, i.e., RGB camera, and Wi-Fi, are used in
tandem to come up with a robust activity detection mechanism.

Many of the sensors used for occupancy and activity detection are spatial in nature, i.e., their data are
specific to the design of the spatial environment that they are deployed in. Hence,ML algorithms designed
for one environment fails to perform optimally for new environments. Hence, transfer learning methods
have been proposed in the literature to adapt ML models across domains and sensor choices. Zou et al.
(2019) adapt anMLmodel to detect gestures usingWi-Fi CSI data between two rooms in a building. Such
applications involving transfer learning between domains has been explored in the application of
occupancy and activity sensing in several other literature studies (e.g., Pan et al., 2008; Khalil et al.,
2021; Li et al., 2021; Dridi et al., 2022; Omeragic et al., 2023). Pinto et al. (2022) delve further into a
review of transfer learning application in smart buildings.

To summarize, ML methods have been proposed to map the relation between data from sensors, and
occupancy/activity. Once trained, these models can then be deployed to predict the occupancy which then
gets fed to building control mechanisms (Esrafilian-Najafabadi and Haghighat, 2021).

3.3. Building design and modeling

Building information modeling (BIM) was introduced in the 1970s when Eastman (1975) proposed the
idea of migrating from hand-drawn building design toward automation and digitization. Early building
modeling focused on the computational representation of geometry, which is also known as 3Dmodeling.
Later, a set of new tools focusing on the building performances were developed, including Building
Design Advisor (BDA) (Papamichael et al., 1997), Ecotect (Roberts and Marsh, 2001), EnergyPlus
(Crawley et al., 2001), ESP-r (Strachan et al., 2008), DEST (Yan et al., 2008), andModelica (Fritzson and
Engelson, 1998). They focused on thermal, energy, lighting, and air quality aspects. They provided
feedback and “what-if" analyses. With the emergence of IoT, data have become more easily accessible,
which has helped support building simulation tools and allowed development of ML models. The
development of building models over the past decades is summarized in Figure 4.

The goal of building modeling is to support the design, construction, and operation of buildings. Early
building modeling was mostly used during the design phase, and was not usually maintained or updated
after the building was constructed. In recent years, the digital twins (DT) concept (Grieves and Vickers,
2017) has emerged for physical systemswhere a virtual “twin" is developed that mirror the actual physical
system. DT can monitor a building’s condition in real-time and plays an important role in control
applications, fault diagnosis, and prognosis. The following sections describe the intersection between
ML and building modeling. It is separated into 5 parts: models, design automation, DT, applications, and
challenges.

3.3.1 Models
There are three types of building models: white box, black box, and gray box, as illustrated in Figure 5.

3.3.1.1. White box model. The “white box” or “first principles” approach models the building system
with detailed physics-based equations. Building components and subsystems are modeled in a detailed
manner to predict their behaviors. Common Building Performance Simulation (BPS) tools for physics-
based modeling are Modelica (Fritzson and Engelson, 1998), EnergyPlus (Crawley et al., 2001),
TRNSYS (U. o. W.-M, 1975), and ESP-r (Strachan et al., 2008). Though a white box model can capture
the building dynamics well, it requires a lot of information from the physical building andmay suffer from
high uncertainties.
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3.3.1.2. Black box model. A black box model, also known as a data-driven or ML model, is a modeling
approach that constructs a model directly from data without knowledge of the system physics. With the
emergence of IoT, sensor measurements are continuously collected at various locations in a building to
reflect current operations, which provides an opportunity to build data-driven models. For example,
building load prediction using black box models is an important aspect of improving building energy
performance. Its applications include control optimization, fault diagnosis, and demand sidemanagement
(Zhang et al., 2021). The common ML methodologies for building load prediction are ANN, SVM,
Gaussian-based regressions, and clustering (Seyedzadeh et al., 2018). The drawbacks of black box
models include the need for a large amount of data and the fact that the accuracy of the model is highly
dependent on the data quality. Another drawback is their fragility, which occurs when they give results
that are not physically possible andmay not perform reliably in conditions that have not been seen before.
In addition, black box models lack interpretability and may have a high computational cost.

3.3.1.3. Gray box model. Gray box modeling is a modeling approach that simplifies the physical
equations to simulate the behavior of a building and it combines them with ML techniques. By doing
that, it aims to reduce the system complexity whilemaintaining prediction accuracy. An example of such a
model is using thermal networks to model buildings (Bacher and Madsen, 2011), which is a common
approach in building modeling. Thermal networks model dynamics of a building through resistor and
capacitor (RC) circuits, and the parameters are identified withmeasurements from the real system. Studies
show that the gray box model works well in building control applications (Širokỳ et al., 2011; Oldewurtel
et al., 2012a) and grid integration. However, the design of the thermal network is still ambiguous. The best
selection of the number of resistors and capacitors for the model is unclear. Bacher and Madsen (2011)
analyzed the model selections and found that the 3R3C model is the minimal best fit model for a 120 m2

building located in Denmark. However, it is inconclusive if all buildings of similar size and use can be
modeled with 3R3C with the same accuracy.

Lin et al. (2021) build a building model based on information available to minimize the number of
uncertain parameters by combining physics-based equations with a neural network. Other researchers
(Daw et al., 2017; Robinson et al., 2022) explored physics-based ML for modeling lake temperature and
other dynamical systems. However, there are limited studies in physics-basedML for building modeling.

Figure 4. Evolution of building modeling.

Figure 5. Three types of building models.
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The definition of gray boxmodels is still ambiguous,where it can refer to a resistor–capacitor network or
a hybrid model that utilizes both first principal equations and data-driven methods. While gray box models
have shown success in several applications, they are not systematically defined or thoroughly analyzed.

3.3.2. Design automation. Buildings are complex systems. Among their objectives is to provide
comfortable and safe conditions to people. Building performance is affected by people’s behavior
(Hong et al., 2017). Developing a model of a building with these complexities is often time-consuming
and costly. Though white box models are widely used in simulation-based studies, gray and black box
model are more commonly used in experimental studies of real buildings (Zhan and Chong, 2021). As a
result, building design automation is an active area of research to help in developing fast and accurate
building models.

Currently, automated design of buildings mostly involves the development of 3D building models.
Most of the 3D models are built with Revit/AutoCAD based on site measurements or estimations during
the design phase. Sometimes, researchers collect building measurements through LiDAR or airborne
stereo imagery to construct 3D building models (Haala and Kada, 2010), which can automatically be
imported to BIM or building simulation tools. However, this approach only captures the building at a
geometrical level and cannot represent the operational level of buildings. Jia et al. (2018) proposed a
platform-based design to reduce redundancy in hardware and software usage in building applications. The
design performance is optimized by exploring the design space.

The emergence of building design libraries such as Modelica Building Library (Wetter et al., 2014)
opens up opportunities for platform-based design automation of buildings. However, automated building
modeling that captures building dynamics is underdeveloped, and most modeling methods still require
human intervention.

3.3.3. Digital twins. The AIAA and AIA (American Institute of Aeronautics and Astronautics, 2022)
recently published a position paper that defines a digital twin as “A set of virtual information constructs
that mimics the structure, context and behavior of an individual/unique physical asset, or a group of
physical assets, is dynamically updated with data from its physical twin throughout its life cycle and
informs decisions that realize value.” The same definition can be applied to buildings, specifically how a
physics-based model evolves over the course of its lifecycle as information or data about the building
becomes available, i.e., as the building goes from the design phase (as designed) to the construction and
commissioning phase (as built) to the postoccupancy phase (“as operated”). For buildings, forward BPS
tools such as EnergyPlus (Crawley et al., 2001), TRNSYS (U. o. W.-M, 1975), ESP-r (Strachan et al.,
2008), and Modelica (Fritzson and Engelson, 1998) are usually used to estimate the energy use of the
building and its subsystems.Over the past decade,MLhas been increasingly applied toBPS, fueled in part
by the emergence of the IoT and the need for computationally tractable predictions.

ML has been used during the design stage to augment generative design and parametric simulations.
Deep generative algorithms such as Generative Adversarial Networks (GANs) (Huang and Zheng, 2018;
Nauata et al., 2020) have been proposed for generating diverse but realistic architectural floorplans that
are known to be a time-consuming iterative process. The automated generation of architectural floorplans
can be coupled with BPS tools to systematically explore architectural layouts that optimize building
energy efficiency (Gan et al., 2019).

Metamodeling, defined as the practice of using a model to describe another model as an instance
(Allemang et al., 2011), is another aspect where ML has been extensively applied to BPS throughout the
building lifecycle. Given the complex interaction between different building systems and subsystems,
design optimization during early design typically requires exploring high-dimensional design space.
Consequently, ML has been used to create metamodels that can be used for optimization and uncertainty
analysis (Eisenhower et al., 2012; Bre et al., 2020). Although most studies predict energy consumption
and thermal comfort, metamodels have also been proposed for the emulation outputs such as natural
ventilation and daylighting to support the modeling of passive design strategies (Chen et al., 2017). A
comparison of different metamodeling techniques can be found in Østergård et al. (2018).
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Moving from design to postoccupancy, model calibration is often undertaken to improve the model’s
credibility by reducing the discrepancies between simulation predictions and actual observations.
Metamodeling using ML is often used to emulate simulation predictions to alleviate the high compu-
tation costs (Coakley et al., 2014). Particularly, metamodeling is almost always applied in Bayesian
calibration that is computationally intractable because of the need to perform many model evaluations
(Chong et al., 2021). More recently, Bayesian optimization and meta-learning through deep probabil-
istic neural networks have been proposed to reduce the number of simulations required for model
calibration significantly, avoiding the need for metamodels altogether (Chakrabarty et al., 2021; Zhan
et al., 2022).

BPS has also been applied to enhance the use of deep RL (DRL) based building controls. For instance,
BPS can be used to develop building test cases for the comparison and benchmarking of DRL algorithms
(Blum et al., 2021). The deployment of DRL in real-world building controls can be challenging because of
the need for large amounts of training data before achieving acceptable performance (Botvinick et al., 2019).
Consequently, the exploration during online training can lead to undesirable building operations when the
algorithm performs suboptimally. To enhance the practical applications of DRL, BPS has been used as an
emulator to pretrain a DRL agent offline. For instance, Zhang et al. (2019) used an automatically calibrated
EnergyPlusmodel for the offline training of anA3C (AsynchronousAdvantageActor-Critic) algorithm that
is subsequently deployed in a radiant heating system. It was also shown that a DRL trained offline could
achieve similar near-optimal results asmodel predictive control (Brandi et al., 2022).However, pretraining a
DRL agent using a model contradicts the advantages of DRL being “model-free” because BPS models can
be time-consuming to develop. Therefore, further research could usefully explore the use of simpler and a
lower level of detail models for the offline training of DRL agents for building controls.

3.3.4. Applications: Design, control, and fault diagnosis. The main applications for building modeling
are facilitating design choice, testing control algorithms, and detecting faults in a system. BPS is used in the
design phase of buildings to provide feedback in energy consumption, and greenhouse gas emissions and to
guide design choices (Clarke, 2007;Hensen andLamberts, 2012).Additionally, the development of a robust
control system often requires a detailed understanding of system dynamics. Buildingmodeling can provide
dynamic feedback to test various control algorithms, which will be discussed in more detail in the next
section. Fault detection also plays a crucial part in reducing maintenance costs and increasing the energy
efficiency of building operations (Dong et al., 2014). However, faults in an actual building do not occur
frequently, and it is hard to collect fault data for analysis. Data sets for fault diagnosis are usually created
through testbed experiments or simulations. BPS can provide “what-if" analysis to assist in fault modeling
and creating meaningful datasets.

3.3.5. Challenges. There are two main challenges in building modeling. First, there is a gap between
building models during the design and the operation phases. Moreover, no standard connections are
established between BIM and BPS tools, which results in unavoidable human effort to recreate the model
for operation after the design phase. Though some established geometrical models can be exported to the
BPS software, there are limitations in software compatibility and set up requirements. Second, there is no
systematic approach to model selection. Limited studies have explored whether a certain type of model
(white, black, or gray box model) is better for a specific application. Developing a level of abstraction of
building modeling may benefit the development of a better model selection process for various applica-
tions. We anticipate that techniques from machine learning, such as neural architecture search and
physics-based ML, can be used here to improve building modeling.

3.4. Building control

A critical application of a building model is the design of control systems for the building subsystems.
These are typically “local models” that capture only aspects of the building that are pertinent to low-level
control, such as a physical model heat and ventilation in a collection of rooms near a target temperature.
However, a large-scale model is still important for controller design, as it is necessary to understand how
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the subsystems of a building interact. For the purposes of this review, the most important subsystem in
terms of complexity of control and size of energy demand is arguably the HVAC system, so we will focus
our attention there. However, we do want to note that HVAC is by no means the only control problem
that has received focus; other building control systems enjoy active work and engaged communities,
including lighting (Lee and Selkowitz, 1994; Panjaitan and Hartoyo, 2011; ul Haq et al., 2014; Wagiman
et al., 2019), window control (Psomas et al., 2017; Yoon et al., 2020), electric vehicle charging (Kontou
et al., 2017; Turker and Bacha, 2018; Al-Ogaili et al., 2019), and domestic water heating (Passenberg
et al., 2016; Wanjiru et al., 2017; Starke et al., 2020).

Controlling the HVAC system of a building can be, and for many decades has been, accomplished by
classical control techniques. Here, the control objective simply being to keep temperatures somewhat
close to a setpoint or within a deadband. Two simple controller types have proven to achieve this goal for
HVAC systems: (1) threshold-based “bang-bang” controllers (2) and PID controllers. Bang-bang control
applies the greatest allowable heating or cooling when the measured temperature leaves a certain band
around the target temperature, but otherwise remains inactive. PID controllers use a linear feedback
strategy, which decides a control action using a linear function of previous measurements. PID denotes a
“proportional-integral-derivative” function formed as the sum of the current measurement (the propor-
tional component) and approximations of the time derivative and integral of the temperature. These
simple control policies even achieve optimality in certain cases: for example, the bang-bang strategies are
optimal for minimizing the total time that the HVAC system is active, and PID controllers can be tuned to
minimize the sensitivity of the controller to exogenous disturbances. However, if we ask for a strategy that
is optimal with respect to delivering thermal comfort, or to account for energy load profiles throughout the
day, predictively preheat and cool, or try tominimize other metrics such as carbon emissions, these simple
control strategies no longer suffice.

The optimal operation of HVAC systems with respect to cost, emissions, comfort, or a combination
therein is a multistep optimization problem due to the thermal capacity of buildings and the nonlinear
operation of the HVAC system. Specifically, the dynamics of building thermal behavior is a slow-moving
process and subject to time delays. This enables the precooling or preheating of buildings (e.g., storing the
cooling energy in building mass). Besides, the operation efficiency of HVAC system is nonlinear with
respect to supplied air. For example, the amount of energy required tomaintain a constant temperature in a
zone is a product of supplied zone air flow rates and the difference of the indoor temperature and the
supplied temperature. The fan power of air handling unit (AHU) is cubic with respect to the total supplied
air. In addition, the operation of HVAC system suffers from time-varying disturbances, such as the
outdoor weather variations (i.e., radiation, temperature, humidity, etc.) and the occupancy changes.

HVAC system operation has raised extensive concerns in recent decades due to the continued increase
of energy consumption of buildings and the high priority to save building energy consumption. Fortu-
nately, the relatedwork is plentiful and rapid progress has been achieved in this area. Existing studies can be
broadly categorized bymodel architecture into: (1)Model Predictive Control (MPC) and (2)RL.On top of
that, the combination ofMLwithMPC is developedwith the objective to explore the benefits of the classic
MPC controllers and the powerful approximation and characterization capabilities of ML tools.

MPC can be used to turn a standard ML algorithm for supervised learning into a model-based RL
strategy for optimal control. The key idea is that MPC can be decomposed into two functional
components: a state transition model and an optimizer. The ML half of the reaction is responsible for
learning a state-space dynamical model– the goal is essentially to learn an application-specific digital
twin. The predictive model may be application-agnostic (e.g., a general neural net) or leverage some
degree of model knowledge as in the physics-informed model used in Nghiem et al. (2023).

In the following sections, we review the existing studies in ML and building control under three
categories.

3.4.1. Model predictive control
MPC takes a large step toward improving these aims by incorporating optimization directly into the
control policy.Wewish to frame briefly our section onMPC: although it would not be considered a classic
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case ofML, we find it helpful to thoroughly embed the motivations behind its development and active use
into our understanding of the learning-based methods to follow. Thus, we will spend significant time
describing it.

The key idea of MPC is to predict the value of the objective function in the future using an auxiliary
dynamical model of the building’s behavior and to select a control action that optimizes the predicted
reward. Generally, if the dynamics model is f , the action u, the state x, the objective y, and the current
timestep t, then MPC solves:

argmin
u

Xt + T

τ¼t

�y x,uð Þ

subject to : x τ + 1ð Þ¼ f x τð Þ,u τð Þð Þ;τ¼ t,…,T�1

x t + Tð Þ¼ 0;τ¼ t,…,T�1

x τð Þ∈X ;τ¼ t,…,T�1

u τð Þ∈U ;τ¼ t,…,T�1

(3.1)

The condition x τð ÞX is a state-space constraint, which can be used to ensure safety by attempting to
keep the state vector in a region of the state space that is known a priori not to be dangerous.

For a given state x, (3.1) computes a sequence of T control actions in order to minimize the predicted
reward.While the building control policy could use all T actions, so that (3.1) need only be solved every T
time steps, to do so would force the controller to ignore what is happening in the outside world for those
time steps. Since the control model used in (3.1) can never be fully accurate, and since dynamical
prediction errors compound very quickly, what happens during those time steps is likely very different
from what the controller predicts in (3.1). Moreover, the controller would be effectively blind to
unanticipated dangers while executing the sequence: by the time T time steps are up, it may be too late
to bring the system back to safety.

Thus, the second key idea of MPC is to resist the temptation to use the full input sequence: an MPC
controller solves (3.1) at each time step, and applies only the first computed input. Using only the first
control action is how MPC mitigates potential dangers while retaining optimal behavior.

MPC has been widely used to achieve anticipatory control of HVAC system for energy saving while
ensuring human comfort (Drgoňa et al., 2020). MPC-based control methods require the solving of a
multistep optimization problem so as to achieve the control sequence. The control output at the current stage
is exerted and this process is repeated with the evolving of time. MPC-based control methods are online
control methods that rely on the dynamic predictions of system disturbance. For HVAC control, several
critical issues are related to the development of MPC-based controller: modeling complexity, modeling
accuracy, and prediction accuracy. MPC-based controllers have been popular with HVAC control (see
(Oldewurtel et al., 2012b; Afram and Janabi-Sharifi, 2014; Drgoňa et al., 2020; Kathirgamanathan et al.,
2021) for a comprehensive review).The MPC controllers generally use either physics-based models
(also known as “analytical first principle” or “forward models”) or data-driven models (also known as
“black box” or “inverse models”) to predict system output.

MPC-based controllers have many advantages over rule-based or PID controllers. Since the energy
saving and human comfort targets may be directly expressed in the MPC’s objective and constraints and
the time-varying disturbances are directly considered, MPC shows superior performance in energy
efficiency and in ensuring human comfort. In addition, MPC-based controllers are robust to the time-
varying disturbance, quick transient response to the environment changes, and consistent performance
under a wide range of varying operating conditions.

However, MPC’s advantages are achieved at the cost of frequently solving comprehensive optimiza-
tion problems online. The intrinsic problem related to theHVAC control is nonlinear and nonconvex. This
leads to the high online computation cost. Many efforts have been made to address the computational
challenges. One solution is to restrict attention to linearmodels of the form x t + 1ð Þ¼A tð Þx +B tð Þu, where
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A tð Þ and B tð Þ are matrix functions whose values may be time-dependent but not state-dependent. This
model simplification, in conjunction with a quadratic objective, reduces (3.1) to a quadratic program, a
convex problem that even embedded devices can solve quickly. However, a simpler model will
necessarily lead to predictions of lower accuracy, and thereby worse performance. If we do not wish to
simplify the model, an alternative is to develop explicit MPC controllers (Drgoňa et al., 2013; Klaučo and
Kvasnica, 2014; Parisio et al., 2014). The key idea is to drive some close-form solution for the MPC
problem and then identify the parameterized control outputs online. To achieve the objective, simplified
or approximated linear models for HVAC control are generally used. The benefit of explicit MPC is that it
can be implemented on simple hardware and yields low online computation cost. Another line of work to
address the computation burden is to develop distributed solvers. When MPC-based controllers are
applied to large-scale commercial buildings, we require to solve large-scale optimization problem that
couples the control of the HVAC system supplying multiple zones or rooms. Centralized methods tend to
suffer from the high computation cost and are not scalable. Many studies have made effort to develop
distributed MPC controllers (Radhakrishnan et al., 2016, 2017; Zhang et al., 2017; Yang et al., 2020,
2021). The major challenge to develop distributed MPC controllers for HVAC system is to handling the
couplings across the multiple zones, including the thermal couplings (i.e., heat transfer), the composite
objective (i.e., the fan power is quadratic with respect to the total zone mass flow rates), and operating
constraints). The optimization problem related to multizone HVAC system is a nonlinear and nonconvex
optimization problem subject to nonlinear couplings (nonlinear and nonconvex). The existing distributed
solutionmethods cannot be directly applied to solve such a class of problems. To overcome the challenges
and enable the decomposition of the problem, (Zhang et al., 2017; Yang et al., 2020, 2021) has explored
the convex relaxation technique to solve such problem. Particularly, Yang et al. (2020, 2021) have applied
the well-known alternating direction method of multipliers (ADMM) to solve the resulting relaxed
problems, which have nonconvex objectives but subject to linear couplings. The superior performance
both in energy saving and computation efficiency have been demonstrated via simulations. Slightly
different, Radhakrishnan et al. (2016, 2017) have explored the decomposition of the problemwith respect
to the zone controller via hierarchical optimization and relaxation. Particularly, these works have relied on
predictions to predict the thermal couplings across the zones. Besides, the objective components are
optimized in two steps. These studies have comprehensively discussed the challenges to develop
distributed control methods for large-scale commercial buildings due to the problem complexity.

3.4.2. Reinforcement learning
Time-varying and uncertain parameters such as theweather variations and occupancy represent onemajor
challenge for HVAC control. MPC controllers have relied on short-term dynamic predictions to address
such problems but at the cost of high online computation burden and an accurate model to predict the
system state evolution. These are the two main obstacles for the wide deployment of MPC controllers in
practice. As one main branch of ML, RL explores to optimize the operation of system through the
interaction with environment as long as the performance can be observed and quantified.

RL being one of the mainstream tools for multistage decision making under uncertainties (Sutton and
Barto, 2018) makes it well suited for HVAC control. Indeed, RL has been widely used for advanced
control of HVAC systems considering the uncertainties and multistage problem features (Sun et al., 2012,
2015; Yang et al., 2021). RL can enable efficient online computation by learning the control policies
offline. Specifically, by learning the control policies offline, the online implementation of RL only
requires to search the table to identify the mapping from the state space to the action space.

However, the obstacle to effective implementation of RL is that the learning may be computationally
intensive or intractable when state and action space are large, either in terms of dimensionality (number of
observations) or enumeration of action space (continuous vs. categorical.) To overcome the challenges,
DRL has been popular in this domain. DRL proposes to combine the approximation and characterization
capabilities of deep neural networks with RL techniques. Specially, deep neural networks are used to
characterize the state or state action value functions. The benefits of DRL include reducing the quantity of
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data required for training and reducing the memory required to store the policy for online implementation.
The proliferation of smart meters has boosted the development of DRL-based HVAC controllers for smart
buildings. We direct the readers to (Han et al., 2019; Mason and Grijalva, 2019; Wang and Hong, 2020;
Yang et al., 2020; Yu et al., 2021). As an earlier work, Wei et al. (2017) has explored deep Q-network-
based RL for single zone HVAC control. A Q-network is trained to approximate the state-value functions
to overcome the computation burden related to the large state space. Yu et al. (2019) has explored the
application of DeepDeterministic Policy Gradients (DDPG) (Lillicrap et al., 2015) for themanagement of
building energy system including anHVAC system. The benefit of DDPG is that it can enable the decision
making on the continuous state and action space so as to improve the control accuracy. While most of the
existing works have focus on the control of HVAC system for single zone or single room, several recent
works have explored the development of distributed RL for multizone commercial buildings (Yu et al.,
2020; Hanumaiah and Genc, 2021). For example, Yu et al. (2020) studied the application of multiagent
actor-attention-critic RL (Iqbal and Sha, 2019) for multizone HVAC control considering both thermal
comfort and indoor air quality.

One major advantage of RL-based HVAC controllers over MPC is that it does not depend on explicit
and accurate models, as in classical RLmethods, a model of the environment may only ever be implicitly
encoded in the inner layers of the policy or value prediction. In this way, RLmethods alleviate the burden
on the engineer for articulating an accurate model of the environment. It also allows for environment
adaptation, i.e., flexibility to an environment that changes over time. The RL agent would just shift the
value prediction it makes from actions over time.

RL methods are generally offline tools and require a rich set of data to compute the optimal control
policies for a wide range of possible operation conditions. Moreover, the existing RL models including
DRLs are still suffering from the computation intensity and scalability issues. Classical RL works best in
cases where failure, at least at first, is relatively cheap. However, numerous studies elucidate ways that RL
can be modified to reduce variability and increase safety. Arnold et al use Surprise Minimizing RL, a type
of RL that rewards the agent for achieving states closer to those seen before, in optimizing building
demand response (Arnold et al., 2021). Augmenting RL with a system simulation is important, as almost
always a large part of the training can take place in a simulation environment which can use a rules-based
heuristic as a starting point, and use exogenous parameters to create a distribution of unique systems to
train on (i.e., domain randomization). Finn firmly established the field of meta-learning in RL, arguing
that a technique like model agnostic meta-learning can train in the different simulations to approximate a
starting distribution for policy network weight initializations (Finn et al., 2017). Jang et al. studies offline
learning through offline-online RL (Jang et al., 2021) andModel AgnosticMeta Learning (MAML) (Jang
et al., 2021) to get RL agents “hit the ground ready” using offline datasets and simulations.

3.4.3. Learning-based MPC
From the above literature, we note that MPC and RL tools both have pros and cons for HVAC control.
MPC-based controllers can yield superior performance both in energy saving and ensuring human
comfort due to the capability to incorporate the dynamic predictions regarding the disturbances. However,
this is achieved at the cost of high online computation burden. Moreover, MPC-based controllers
generally suffer from the modeling complexity. For example, the more elaborate thermal comfort model,
such as the PMV is hard to be incorporated in the MPC-based control due the challenge to solve the
optimization problem (Xu et al., 2017). In contrast, RL-based models can accommodate the modeling
complexities but require a huge amount of data to ensure the consistence of performance under
uncertainties. The current research trends have been the combination of MPC and RL so as to enjoy
both of their pros. The researches are mainly in the following two aspects. One is to use ML to mimic the
control policies output by MPC controllers. Specifically, the control of MPC controllers can be regarded
as the parameterized policy with respect to the disturbance. To reduce the online computation burden and
enable the deployment of MPC controller on simple hardware, the characterization capacity of ML, such
as deep neutral networks can be leverage to train parameterized control policies. This can yield control
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policies of high energy-saving performance and human comfort with MPC at lower online implemen-
tation cost. For example, Drgoňa et al. (2018) proposed an approximate MPC where deep time delay
neural networks (TDNN) and regression tree-based regression models are used to mimic the control
policy of MPC controller. Simulation results show that the approximate MPC only incurs a slight
performance loss (3%) but reduces the online computation burden by a factor of 7. Later, a real-time
implementation of the approximate MPC is developed and demonstrated in Drgoňa et al. (2019) in an
office building located in Hasselt, Belgium. Similarly, Karg and Lucia (2018) proposed to use deep
learning networks to learn the control policies of MPC controller to enable low-cost implementation.
Using ML tools to learn the control policies of MPC controllers can be regarded as the extension of the
explicit MPC discussed above. When the problem is simple and the closed-form solution is available, the
implementation of explicit MPC only requires to compute the parameters of the parameterized policy and
therefore the online implementation only requires low online computation cost. By leveraging ML tools,
we are able to achieve the same objective by training the parameterized policies using deep neural
networks when the problem is complex and the explicit closed-form solution is not accessible. Another
line of work to combineMLwithMPC is to useML to establish themodels for some complex components
with building or HVAC system. We direct the readers to Afram et al. (2017) for a comprehensive review.
For example, neural networks can be trained to efficiently predict PMV (Ferreira et al., 2012; Ku et al.,
2014) for aMPC controller. Since neural networks are generally characterized by nonlinear functions, the
nonlinear solvers, such as genetic algorithms and particle swarm algorithms are often used to solve the
resulting optimization problem. Compared with the original PMVmodels, neural network approximation
can enable more efficient evaluation of the PMV index without requiring any iterations.

3.4.4. Summary
ThoughMPC andRL are twomain tools for HVAC control, there has not been significant implementation
of them in buildings, where the primary controllers have been PID and rule-based ones. There are still
many practical issues required to be addressed to enable the deployment of MPC and RL-based methods.
Challenges related to classic MPC controllers include the development of models that can properly trade
off the modeling complexity and accuracy. In addition, the performance of MPC-based controllers is
closely related to the prediction accuracy of disturbance and the prediction horizon. Last but not the least,
MPC-based controllers suffer from the high online computation cost and the implementation requires
advanced micro-controllers. In contrast, RL-based controllers are free from the establishment of models
and can enable efficient and low-cost implementation but requires enormous data to train the agent.
Moreover, RL-based controllers cannot incorporate the possibly available dynamic predictions to
enhance the performance. That is why most of the existing RL-based controllers are not comparable
withMPC-based controllers in terms of energy-saving performance. Another critical issue related toMPC
controller is that the safely cannot be ensured. Since the agent is trained on limited data, RL-based
controller may draw the system to any possible state whichmay be prohibitive in practice. CombiningML
with MPC-based controllers seems a promising solution as it can enjoy both the pros of ML and MPC.
However, howwell the control policies can be learned and how the network should be designed remain to
be investigated. The operation of HVAC system is expected to provide a comfortable indoor environment
for the occupants.

3.4.5. Mechanism design
Compliance is the ability for people, in aggregate, to follow guidelines or recommendations. In any
system that seeks to influence human behavior, lack of compliance is generally a large problem. Energy
systems are no different: an empirical study of demand response found that noncompliance weakened the
overall effect of the programs (Cappers et al., 2010).

Gamification of systems, i.e., the adding of an additional layer of intrinsic motivation to a core
program, may be an important tool to boost compliance. The additional layer of motivation may come in
the form of engagement-derived pleasure (i.e., interesting and exciting gameplay), competition
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(i.e., equally matched competitors), or social status (i.e., badges, ranks, and advancement). Hamari et al.,
2014 rightly note the explosion in interest in gamification, from gamification around code learning to
gamification around energy demand reduction and perform an extensive review of its efficacy, finding
that generally gamification provides positive results. Figure 6 provides a visualization of the gamification
pipeline and the purpose it serves.

There are some examples of gamifying office-related energy systems in the literature. Although not
extensively, ML algorithms have been utilized in the gamification process to improve some individual
components of the game. In one example, a game called “NTUSocial Game” has been formulated around
reductions in energy in a residential dormitory. Here, players compete against each other to have the
lowest energy, and accrue points depending on howmuch less energy they consume. Prizes are not simply
doled out according to whoever has the highest energy reductions; instead, players are entered into a prize
pool if they are among the top third performing participants. A small number of prizes are allocated
randomly among thewinning pool as per the Vickrey Clarke Groves (VCG) auctionmechanism. A design
like this is shown to boost user engagement and directive compliance (Konstantakopoulos et al., 2019a,
2019b). The NTU Social Game has been used for energy reduction and to test different visualizations on
player outcome (Spangher et al., 2019). It has also been used to conduct segmentation analysis of players
into low, medium, and high energy-efficient groups for intelligent incentive planning (Das et al., 2019,
2020). The authors use a hybrid approach of supervised classification and unsupervised clustering, to
create the characteristic clusters that satisfy the energy efficiency level. They also have incorporated
explainability in the model by combining both the ML approaches.

An extension of this work, “OfficeLearn”, considers prices that are distributed across a day. Here, a
building controller sets energy prices throughout the day, and players compete with each other on having
the lowest cost of energy throughout the day. As before, the top performing individuals are entered into a
prize pool and selected based on a VCG auction mechanism (Spangher et al., 2020). This paper presents
an OpenAI gym environment for testing demand response with occupant level building dynamics, useful
for standardizing RL algorithms implemented for the same purpose.

Other examples of energy-based games exist. In one game called “energy chickens”, competitors
save energy from smart appliances for the health of virtual chickens; depending on how healthy the
chickens are, they will generate probabilistically more or less eggs (Orland et al., 2014). In another
game, “Energy Battle”, players in simulations of identical residential homes strive to reduce energy and
players compete one to one without a VCG mechanism (Geelen et al., 2012). In a third game,
“EnerGAware”, players also compete in a building simulation in which players, who are virtual cats,
decide how to operate a house’s appliances with greater energy efficiency while not reducing any
overall functions (Casals et al., 2020). The use of ML in energy social games, although not prominent
before, is showing signs of increase, and is adequately justified since ML can have a profound use in
coordinating multiagent systems such as a game.

Figure 6. An example of a system in which gamification can be part of a control strategy.
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3.5. Integration of buildings with power grids, microgrids, and energy markets

So far, we have discussed how modeling and control methods can be used to improve occupant comfort
and increase the energy efficiency of buildings. However, buildings do not function in isolation and their
operation can actually have significant impacts on other energy systems. The energy utilized in buildings
come from power grids, and recently, from renewable sources installed at the local building/community
level as well. In order to mitigate climate change, buildings must maximize their energy consumption
from clean sources.

One way that buildings can achieve the above is by providing load flexibility to facilitate clean energy
sources such as wind and solar that have variable generation and cannot be controlled at will to meet
electricity demand, a mechanism commonly called demand response (DR). By making their electricity
consumption flexible, buildings can adapt to variable generation curves and enable greater amounts of
clean generation on the power grid. Buildings can capitalize on their load flexibility using two methods:
by participating directly in DR programs run by utilities or by forming aggregations and participating in
broader energy markets.

Another way that smart buildings can mitigate carbon emissions is by investing in local clean
generation resources (like solar). Smart buildings are often equipped with distributed energy resources
(DERs) such as rooftop solar, backup batteries, and electric vehicles (and chargers) to reduce demand
charges or optimize grid consumption. If these resources are associated with a single building, they may
not be fully utilized. Therefore, buildings should function as prosumers, i.e., use their electricity
production capability to provide services to other buildings or to the power grid. Doing so can increase
the utilization of clean energy sources, and incentivize additional investment in DERs thus reducing the
reliance on grid-wide CO2 emission. In the following parts, we will discuss DR in further details, and how
ML plays a role in achieving the same. We will also cover on the prosumer nature of buildings.

3.5.1. Demand response
We start off by discussing how individual buildings can use their load flexibility as DR resources. DR is a
broad term for a variety ofmethods used tomodule electricity demand. These can include load response to
time-varying electricity rates, financial incentives, or direct control of loads (like appliances and air-
conditioning) by utilities.

3.5.1.1. DR sources and timescales. There are two primary sources of flexible loads in smart buildings:
lighting and the HVAC system (Watson et al., 2006). Modifying energy consumption for either of these
has a direct impact on the building occupants, as covered in the thermal comfort section (Section 3.1).
Lighting control is a great DR resource since it does not have a rebound effect, i.e., curtailing lighting load
during a DR event does not cause a spike after the DR period ends.

Flexible load can be modulated over timescales ranging from a few seconds to a few hours (Alstone
et al., 2017). For example, smart buildings can shift load by preheating or precooling their indoor spaces,
and can shed load altogether by reducing their lighting levels. They can also modulate their instantaneous
load by adjusting fan speeds, and respond to high-frequency regulation signals in electricity markets.

3.5.1.2. DR program mechanisms. The two most common types of DR schemes are time-of-use (ToU)
rates and curtailment contracts. Time-based rates aim to shape the energy consumption curve by driving
long-term behavioral change and energy efficiency investments (Alstone et al., 2017). Utilities also run
DR programs to procure short-term load curtailment, e.g., in situations when the electricity price spikes
and it is too expensive to procure additional generation. These programs are typically structured as
contracts where the buildings promise to curtail their energy consumption by a certain amount when
called upon to do so, and the utility pays an incentive upfront based on the curtailment size. If the building
is unable to curtail its consumption by that amount, it has to pay a penalty to the utility proportional to the
shortfall. Readers are encouraged to refer to Albadi and El-Saadany (2007) for an overview of common
DR mechanisms.
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3.5.1.3. ML for forecasting loads and baselines. Buildings procure energy from utilities, who buy it
from generators through long-term contracts or in wholesale energy markets. Energy consumption is
variable, and utilities employ many ML methods to forecast electricity consumption accurately. Authors
in Federal Energy Regulatory Commission (2020) provide an overview of the functioning of electricity
markets. The electricity consumption forecasts are usually made for the aggregate load, and individual
building loads are not as important for utilities. However, there are a couple of use cases for load
forecasting at the building level.

First, in order to implement DR programs and incentivize loads to modulate their energy consumption,
it is important to estimate the counterfactual energy consumption: what would the load have consumed
without an incentive/intervention? This is considered as the baseline, and needs to be developed at the
load level, i.e., building level. There are a number ofMLmethods used for developing baselines. Deb et al.
(2017) conduct a review of time-series models for forecasting building energy consumption. They found
that a variety of ML models have been used for this purpose: classical time-series methods such as
ARIMA, SVM regression for short-term and long-term forecasts, as well as neural network-based
methods. Jazaeri et al. (2016) compare different methods for computing baselines, such as regression,
neural networks, polynomial interpolation, and classical methods (X of last Y days) used by utilities. They
find that the ML methods emerge as the state-of-the-art for most of the cases.

A second use case of forecasting load at the building level is peak shaving, where buildings aim to
forecast and then reduce their peak energy consumption in order to reduce the demand charges that they
have to pay as a part of their electricity bill. Xu et al. (2019) develop a probabilistic forecasting
methodology to predict the time of occurrence of magnitude of the peak load, where they quantify the
probabilistic occurrence and magnitude of the peak load. Kim et al. (2019) use a variety of time-series
methods to forecast the peak load demand of institutional buildings, with a dataset of buildings in South
Korea.

3.5.1.4. ML for estimatingDR capability. Once the baseline energy consumption is estimated, the utility/
system operator can compare it with the actual consumption to determine the impact of the DR program,
and in turn determine payments and penalties. However, most energy consumption by buildings is
variable, and depends on occupancy and weather conditions. Additionally, the impact of load reduction
measures such as reducing lighting and changing temperature setpoints are difficult to estimate ahead of
time since the amount of energy curtailed will depend on the building state before the intervention. Some
work has been done to quantify the effect of DR actions, e.g., Nghiem and Jones (2017) develop a
Gaussian processmodel of howbuildings respond toDR signals. InDR contracts, theremight be a penalty
associated with curtailment shortfall, and accurately estimating curtailment capability becomes an
important task.Mathieu et al. (2011) use linear regression to developmodels for estimating DR capability
using time-of-week and outdoor air temperature buckets. It is important to have such DR capability
estimates over longer time horizons, and Jung et al. (2014) develop a look-up table approach to predict
future DR capability. They relate power consumption data to parameters such as time-of-day, day-of-
week, occupancy, and outdoor temperatures and determine the load flexibility at a point when the forecast
value of these parameters is available.

3.5.2. DR aggregations
Load flexibility can be procured through utility programs as discussed previously, and also through
direct market participation by loads. There has been a move in recent years to allow loads to submit
bids for load reduction into wholesale electricity markets, and treat those bids similar to generation
bids. Federal regulations, specifically Federal Energy Regulatory Commission (FERC) Order 2222 in
the United States have mandated that distributed resources be allowed to participate in wholesale
markets. The state of California has instituted a market mechanism called DR auction mechanism to
allow loads to submit bids as ‘negative generation’. However, the magnitude of load flexibility
provided by individual buildings is often too small for them to participate directly in electricity
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markets. This is where aggregations can play a role: aggregators can bundle the load modulation
capability of multiple buildings and use the aggregate capacity to submit bids to electricity markets.
DR can also be coupled with other resources like generation and storage, and form a part of a virtual
power plant.

3.5.2.1. Value proposition of aggregations. Aggregations can add value beyond simply providing a
means of market participation, by spreading the risk of shortfall of curtailment capability. Burger et al.
(2016) discuss the value of aggregators in electricity systems, and identify that apart from opportunistic
and transitory value, aggregations also provide fundamental value, e.g., through economies of scale, that
is independent of market or regulatory context. Since the load curtailment capability of buildings is
variable, and each building faces a risk of having to pay penalties if it curtails less power than it promised
to. However, different buildings will have different variability in their load curtailment capability, and
aggregations can capitalize on this uncorrelatedness to minimize the penalty risk for all the participants
(Agwan et al., 2021). Optimizing the complementary nature of buildings can significantly increase the
marginal value of forming an aggregation.

3.5.2.2. Optimizing market bids. Once an aggregation is formed, it can optimize its bid in electricity
markets using price forecasts and predictions of the available curtailment capacity. Avariety of time-series
methods are used by commercial entities that participate in these markets, and improving on these
methods is an active area of research in both academia and industry as it can directly lead to higher
revenues. Shinde and Amelin (2019) conduct a review of electricity price forecasting methods. Brusaferri
et al. (2019) develop probabilistic forecasting methods for electricity prices using Bayesian deep learning
methods, as opposed to commonly used point forecasts.

3.5.3. Prosumers and local energy markets
So far, we covered how buildings can use their load flexibility to provide services to the power grid, both
individually and through aggregations. Additionally, buildings can directly consume energy from
onsite clean resources. Smart buildings are often equipped with a variety of generation and storage
resources such as rooftop solar, battery backups, and electric vehicle chargers, which can be used to
reduce demand charges or optimize grid consumption. They can profit from these resources by
supplying energy back to the grid, i.e., functioning as prosumers. A prosumer is an entity that is
capable of energy production as well as consumption through the presence of local generation and
energy storage devices.

3.5.3.1. Value proposition of prosumers. Investing in local energy resources is not always a profitable
proposition: buildings have to invest in over-capacity generation to meet peak loads, and storage might
only be used for peak shaving on a few days in a month or a few hours in a day. If these resources can be
shared across multiple users, their utilization levels can increase which can further incentivize investment
in clean energy sources. One way to facilitate such sharing is through local energy markets, where
prosumers can trade energy with each other before procuring the aggregate balance from an outside
source, such as the utility (Agwan, 2020).

3.5.3.2. Organization of local energy markets. There are two main challenges that come up while
organizing local energy markets: selecting prosumers to form a market, and then managing the trades
within the market. ML methods are used in tackling both of these.

First, we consider the problem of setting up a local energymarket, and the methods used to address this
challenge. Saad et al. (2011) use coalitional game theory to optimally aggregate prosumers in a
cooperative microgrid. Wu et al. (2020) uses a mixed-integer linear programming to discuss the optimal
sizing of energy resources in a microgrid. In the study by Quashie et al. (2018), the microgrid resource
planning problem is cast as the upper level of a bilevel program which aims to optimize investment costs
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along with system reliability. Research in this area mainly focuses on optimizing resource investments,
and the problem of evaluating a new prosumer using numerical metrics is not as widely studied. While
forming a local energy market, it is valuable to select participants that complement each other’s net load
curves. For example, a building that has a net load at a certain time would benefit from being in a market
with a net generator at that time. The complementarity of market participants is essentially a measure of
how well the electricity generation and demand curves match up. There have been game theoretic
approaches to evaluating complementary participants, and the authors in Agwan et al. (2021) have
developed a complementarity metric that uses net generation and load curves to evaluate the marginal
value of adding new participants to the local energy markets.

Once a market has been set up, we need to facilitate energy trades between participants. This can be
achieved by soliciting demand and supply bids fromparticipants, and then settling themarket. However, it
may be an onerous task for buildings to generate such bids for a market. An alternative to this approach is
to set a price for energy and then settle all trades at those prices. A number of previous studies develop
price-based controls: Kim and Giannakis (2016) develop a price to minimize load variation, and Liu et al.
(2017) develop a price based on supply-demand ratio to incentivize energy sharing.

While this price can be set in an iterative manner using a variety of distributed optimization techniques,
it might be preferable to set it in a one-shot manner to avoid the time lag of back-and-forth communi-
cations. This method has been investigated in the literature, e.g., Jia et al. (2013) develop an online
learning method to dynamically price electricity for retail consumers. They try to learn the response
function of a number of price-sensitive consumers who modify their HVAC load to optimize their
consumption. Agwan et al. (2021) approach this problem using RL, and develop a controller that can
set day ahead electricity prices for a local market with a variety of prosumers.

In summary, ML can aid in predicting the energy load of buildings, enable DR schemes via load
flexibility, and can accelerate the energy market set up with buildings as prosumers.

4. Limitations of ML in the Context of Smart Buildings

Although ML techniques have proliferated successfully across many fields, the lack of success of ML in
some applications bears note. There are some notable applications where ML does not work well such as
safety critical applications, data-poor applications; we describe the fundamental barriers to success in
these domains. Arguably, most of these barriers also exist when ML is employed in smart buildings.

4.1. 51/49 vs. 99/01 problems

Does the area of interest require 51% and 49% failure of the control algorithm in its trials, or does it require
99% success and 1% failure? Examples of the former may include stock investing, product recommen-
dation, efficient allocation of computational tasks, and image classification. Examples of the latter may
include medical decisions, decisions in autonomous driving vehicles etc.

In smart buildings, the applications fall into both the above categories, and it often becomes harder for
ML algorithms to achieve 99/01 performance without jeopardizing robustness and safety. Advancements
in ML that may help to address 99/01 problems in buildings are safety-guarantees in ML, robust worst
case minimizing RL, proper explainability, etc.

4.2. Data availability

Does the domain provide rich, reliable, and accurate data? The shining examples of ML success often
occur in domains where this is the case: RL techniques started to shine when Atari game simulators were
developed and could be runmillions of times, imageMLbegan to flourishwhen large image datasets were
provided and standardized, and natural language processing began to bear fruit when datasets like the
entirety of Wikipedia could be processed and trained on. Most recently, large language models (LLMs)
have captured public interest with their performance, largely based on their training on an incredibly large
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corpus of written materials. In contrast, building energy datasets are not nearly as large, rich, or diverse,
and so many of the techniques that work well in different domains may not translate well into the built
environment (Ličina et al., 2018; Fierro et al., 2019; Miller et al., 2020; Dong et al., 2022). A fruitful area
of work may include preparing and standardizing large datasets for ease of energy research. Also, given
that each building is unique, techniques such as domain transfer learning may be leveraged to enhance the
utility of building-specific datasets. Also, advancements in RL that can work well in data-poor regimes
may include generative models, regularized and sparse models, etc.

4.3. Pathway to physical implementation

Does the domain have a physical interface that can use the output of MLmodels? Oftentimes, we may put
a lot of work into making a prediction model accurate, but a building from the 1970s might not have the
physical infrastructure to house themodel, respond to its predictions, or reliably provide state information.
A smart appliance may be limited in its scope and effect. To this extent, building operating systems
(OS) are newer developments that seek to unify buildings into one software control scheme. Another
important function of buildingOSes should be to provide to the outside world anAPI that does not need to
be aware of inner complexities of the building but can provide certain data about the building (aggregate
energy usage) and receive certain grid information like price and state. A third important function of the
building OS is to provide unified controls. To this extent, ML research in controls is inherently closer to
many of the applications that a building may need.

4.4. Computational cost

Researchers need to be aware of the tradeoff between energy saved via efficient building operations, and
the carbon emissions from the compute used to achieve the above. Machine learning is notoriously
compute-heavy, and some ML models can require large amounts of energy for training and deployment.
The information technology sector is responsible for 2–3% of global greenhouse gas emissions, and the
benefits of applyingML in buildings to reduce emissions should be compared to the emissions caused by
these models themselves, whether in training or in deployment. Further analysis of these emissions can be
found in Kaack et al. (2022).

5. Conclusion and Future Work

During the life cycle of a building including the design, construction, operation and maintenance,
retrofitting, and disposal, there are many factors that contribute toward a building’s energy consumption,
efficiency, and embodied carbon. In this paper, we primarily evaluated improving energy efficiency in
buildings via ML during design, operation, and maintenance stage. From the well-being of an individual,
to building’s occupants, to the building operations andmaintenance, and finally to the electric grid impact
and energy market economic response, we discussed all the different facets of the smart building
ecosystem.

While ML shows promising results in facilitating the energy improvement of building operation and
maintenance, there are still several challenges and works to alleviate them ahead. The foremost challenge
of all ML approaches is the time and effort to collect reliable data. ML models require a great amount of
data, and the quality and the selection of the data greatly affects the quality of the output model. In thermal
comfort modeling, data are even harder to come by as it uses intrusive methods that require occupants’
input. Additionally, thermal comfort data are inherently class-imbalanced, which may result in ill-
conditioned models. In building modeling, realistic data such as occupancy, temperature settings, and
schedules are crucial, and without them, the outcomes of models may be inaccurate or have a high level of
uncertainty. Furthermore, the realistic data required may be completely dependent on the application in
which the data are needed. Although many researchers have been collecting this realistic data, there is no
consistency between companies or research entities. As such, utilizing the collected data across many
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applications is time-consuming and ultimately infeasible. A potential solution for the above data issue is to
develop a standard for collecting and storing building data, potentially as a public data repository from
which crowd-sourced data can be posted and requested. An example of a data standard that could suffice is
the BRICK schema (Balaji et al., 2018), which is a metadata schema that represents buildings’ sensor
information and the relationships between them. Gray box models developed on the data along with
building physics can be the ultimate goal. Synthetic data-generation methods are also being proposed as a
solution to the data insufficiency problem (Das and Spanos, 2022b).

Generalization is another open challenge for building applications. Firstly, thermal physiology and
expectations vary significantly between human occupants. If all occupants’ thermal comfort models need
to be individually trained, it will be computationally expensive. As a result, the need for more generalized
models that can represent all occupants arises. Secondly, as all buildings are inherently different in design
and operation, models, and control strategies from one building are difficult to apply to other buildings.
Hence, transfer learning and domain adaptation are some open areas of research that help create more
generalized building models.

Finally, thermal comfort models, building models, control algorithms, and grid applications exist on
different platforms and do not have a standard interface through which they can all be used. Developing a
standardized platform for each application and a standardize interface protocol for the above information
can benefit the research communities, as the application of the above techniques are correlated.

As data become more widely available through IoT and ML becomes more computationally feasible,
more andmore success can be achieved in enhancing occupant comfort and building energy performance.
In the future, ML could provide resiliency in the built environment and assist in optimizing occupants’
satisfaction, energy use and cost.
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