We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We previously reported an association between human parechovirus type 3 (HPeV3) and epidemic myalgia with myositis in adults during summers in which an HPeV3 outbreak occurred in children. However, this disease association has not yet been reported elsewhere. We have since continued our surveillance to accumulate data on this disease association and to confirm whether myalgia occurs in children as well as adults. Between June and August 2014, we collected 380 specimens from children with infectious diseases. We also collected clinical specimens from two adult and three paediatric patients suspected of myalgia. We then performed virus isolation and reverse-transcription–PCR using the collected specimens. We detected HPeV3 in 26 children with infectious diseases, which we regarded as indicating an outbreak. We also confirmed HPeV3 infection in all patients suspected of myalgia. In particular the symptoms in two boys, complaining of myalgia and fever, closely matched the criteria for adult myalgia. Based on our findings from 2008, 2011 and 2014, we again urge that clinical consideration be given to the relationship between myalgia and HPeV3 infections during HPeV3 outbreaks in children. Furthermore, our observations from 2014 suggest that epidemic myalgia and myositis occur not only in adults but also in children.
A fully coherent free electron laser (FEL) seeded with a higher-order harmonic (HH) pulse from high-order harmonic generation (HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly, we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling (EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was $20~{\rm\mu}\text{J}$ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 eV and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation (HGHG) at the energy-upgraded SPring-8 Compact SASE Source (SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.
An investigation is made of the role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target. Experimental measurements are presented from an Ar cluster-gas target using short-pulse lasers with various intensities, durations, and contrasts. Calculations in support of these measurements have been performed using a detailed atomic kinetics model with the ion distributions found from solution of the time-dependent rate equations. The calculations are in good agreement with the measurements and the role of hollow atoms in the resulting complicated spectra is analyzed. It is demonstrated that, although the presence of hollow atoms is estimated to add only around 2% to the total line emission, signatures of hollow atom spectra can be identified in the calculations, which are qualitatively supported by the experimental measurements.
We present a rare case of tracheostomy for removal of laryngeal foreign bodies consisting of three connected fish vertebral bones in a 15-month-old girl. Recent endoscopic techniques have made it possible to extract nearly all tracheobronchial foreign bodies with rigid bronchoscopes. However, the three connected foreign bodies in this report could not be extracted entirely by single endoscopy because the glottis as an exit was narrow due to severe oedema. Accordingly, tracheostomy was required to assist ventilation, prevent prolonged post-operative endotracheal intubation, remove the secondary tracheal foreign bodies and to provide a conduit for the introduction of a bronchoscope.
This suggests that tracheostomy should be considered to avoid the potential dangers of severe laryngeal oedema and to secure the route for removal of foreign bodies from the trachea when treating patients with multiple laryngeal foreign bodies and laryngeal oedema.
High-resolution K-shell spectra of a plasma created by
superintense laser irradiation of micron-sized Ar clusters have been
measured with an intensity above 1019 W/cm2
and a pulse duration of 30 fs. The total photon flux of 2 ×
108 photons/pulse was achieved for Heα1
resonant line of Ar (λ = 3.9491 Å, 3.14 keV). In parallel
with X-ray measurements, energy distributions of emitted ions have been
measured. The multiply charged ions with kinetic energies up to 800 keV
were observed. It is found that hot electrons produced by high contrast
laser pulses allow the isochoric heating of clusters and shift the ion
balance toward the higher charge states, which enhances both the X-ray
line yield of the He-like argon ion and the ion kinetic energy.
The effect of thin Ti/PbZr0.4Ti0.6O3 seed layers on the properties of PbZr0.4Ti0.6O3 (PZT) capacitors has been investigated. The seed layer is based on a bi-layer of thin Ti and thin PZT with a total thickness ranging from 10 to 25 nm, which was deposited on Ir/Pt or Ir/IrO2/Pt by sputtering. After crystallization of the seed layers the main 130-nm-thick PZT film was deposited and crystallized. As a result, a highly preferred (111)-orientation of the PZT was obtained on a 10-nm-thick seed layer, where the peak intensity ratios of (111)/{100} and (111)/{110} are about 100 and 20, respectively. The 10-nm-thick seed forms a pyrochlore phase with a very smooth surface, where the formation of the pyrochlore phase is attributed to Pb diffusion, resulting in a Pb deficient stoichiometry. The seed layer transformed to the perovskite phase during the main PZT crystallization. It is shown that an IrO2 layer beneath the Pt can prevent Pt layer degradation related to the volume expansion due to the oxidation of Ir during the main PZT crystallization. Capacitors with the 10-nm-thick seed layer fabricated on the Ir/Pt and Ir/IrO2/Pt substrates showed typical 2 Pr values of 44.0 μC/cm2 and 41.2 μC/cm2, respectively. The voltage found for 90%-polarization saturation is about 3.0 V, and the capacitors are fatigue-free at least up to 1010 switching cycles.
The behaviour of dioxin in several arc furnaces was studied in detail in relation with the
specifications for various types of organic and inorganic gas. After a pilot plant study has
been carried out to know the effect of secondary combustion and rapid cooling on the reduction of
dioxin in the arc fumace, ways to lower dioxin below regulation levels were proposed. To
understand the reactions, laboratory studies and thermodynamic calculations have been done.
For high density FeRAM devices small cell sizes are essential. The combination of the capacitor on plug (COP) structure with the Chain FeRAM™ cell design is used to develop a 32Mb FeRAM. Based on a 0.2 μm standard CMOS process a silicide capped polysilicon plug is used to contact the bottom electrode of the ferroelectric capacitor to the transistor. The barrier contact to the plug is formed by IrO2/Ir and a sputter deposited PZT (40/60) is used as ferroelectric material. The function of SrRuO3 (SRO) layers at the electrode/PZT interfaces is described in more detail. Double sided SRO results in slightly lower coercive voltage and imprint behavior compared to capacitors without SRO. Double sided SRO is essential to achieve excellent fatigue behavior measured up to 1×1011 switching cycles.
Increases in height were reported in children chronically exposed prenatally and postnatally to D2
receptor-blocking drugs. A possible haplotypic association between stature and the DRD2 gene was
also reported. In this study, we examined linkage between stature and DRD2 by genotyping a
dinucleotide repeat polymorphism in 79 sib-pairs aged 8–17 years. An association between stature
and a putative functional polymorphism in the promoter region of the DRD2 gene was examined in
the sib-pairs and in 125 unrelated male adults. All the subjects were Japanese. Linkage (p = 0.004,
SIBPAL) and an association (p = 0.009, paired t-test, in the sib-pairs; p = 0.006, ANOVA, in the
adults) with stature were suggested. These findings indicate that DRD2 is one of the genes that
contribute to heritability of stature.
90nm-thick PZT capacitors using Pt/thinSRO stacked electrodes showed 2V operation capability, no remanence degradation after more than 1E10 switching cycles, and low imprint. Effects of SRO(SrRuO3) electrode have been studied for high-endurance PZT capacitors. In capacitors with only top SRO electrodes, the SRO increased polarization and improved saturation property compared to Pt electrode PZTs. Fatigue and imprint degradation was caused by Pt bottom electrode interface deterioration. It is thought that the oxygen vacancies created with Pb vacancies are important respecting endurance and retention. PZT films crystallized on SRO showed smaller coercive voltage Vc (2/3 of that for PZT/Pt) with random orientation. The SRO layers block Pb diffusion and supply oxygen, thereby resulting in less oxygen vacancy accumulation at PZT interfaces. We have improved the imprint property by the reduction of thermal budget in SRO/PZT/SRO structures.
Ferroelectric thin films typically differ from bulk ceramics in terms of both the average grain size and the degree of stress imposed on the film by the substrate. Studies on bulk ceramics have demonstrated that the number of domain variants within grains depends on the grain size for sizes <˜lμm. This can diminish the poling efficiency of the material. Since most thin films show primary grain sizes well below a micron, similar effects should be observed in films. In addition, since the perovskite ferroelectrics contain ferroelastic as well as ferroelectric domains, it seems clear that stress in thin films may markedly alter the degree to which domain walls contribute to the observed properties. In this paper, the relative importance of these factors are discussed for several types of ferroelectric thin films. Films have been prepared by pulsed laser deposition, magnetron sputtering, and by sol-gel processing. It has been found that epitaxial BaTiO3 films are ferroelectric at 77K down to thicknesses as low as ˜ 60nm. Data on the low and high field electrical properties are reported as a function of temperature, the film crystallinity, and film thickness for representative perovskite films.
Composition control in lead or bismuth based ferroelectric thin films was studied for rf magnetron, dc magnetron and ion beam sputter depositions with metal or oxide targets. For room temperature depositions, (1) control of the target surfaces, (2) suppression of harmful effects from negative ions and (3) control of oxygen content in the films were significant. The surface of the lead target gradually degrades and alters the lead flux extracted from the target. At low pressures resputtering from the film occurs by negative oxygen ions. It is necessary to put more oxygen into the films in the sputter depositions with metal targets and the ion beam sputter depositions. For high temperature depositions, a composition self control was observed for films deposited in excess lead environments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.