We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.
Hematite (α-Fe2O3) photoanodes are widely studied as candidates for water splitting photoelectrochemical (PEC) cells. To speed up the development of high efficiency hematite photoanodes, systematic investigations of the effect of material properties such as dopants and microstructure on PEC properties that determine the photoanode performance are crucial. Toward this end, this work presents a route for reproducible fabrication of thin film hematite photoanodes with reproducible microstructure and PEC properties. Hematite thin (50 nm) films are deposited by pulsed laser deposition from a Ti-doped (1 cation%) Fe2O3 target onto cleaned transparent conducting substrates (fluorinated tin oxide, FTO, coated glass substrates). Special attention is paid to rigorous cleaning of the substrates prior to the hematite deposition, which is found to be crucial for achieving highly reproducible results. Specimens prepared by this route display homogenous conformal coating with very little spread in PEC properties between different specimens, meeting the necessary prerequisite for systematic investigation of hematite photoanodes.
Although blind people heavily depend on working memory to manage daily life without visual information, it is not clear yet whether their working memory processing involves functional reorganization of the memory-related cortical network. To explore functional reorganization of the cortical network that supports various types of working memory processes in the early blind, we investigated activation differences between 2-back tasks and 0-back tasks using fMRI in 10 congenitally blind subjects and 10 sighted subjects. We used three types of stimulus sequences: words for a verbal task, pitches for a non-verbal task, and sound locations for a spatial task. When compared to the sighted, the blind showed additional activations in the occipital lobe for all types of stimulus sequences for working memory and more significant deactivation in the posterior cingulate cortex of the default mode network. The blind had increased effective connectivity from the default mode network to the left parieto-frontal network and from the occipital cortex to the right parieto-frontal network during the 2-back tasks than the 0-back tasks. These findings suggest not only cortical plasticity of the occipital cortex but also reorganization of the cortical network for the executive control of working memory. (JINS, 2011, 17, 407–422)
Although electrical pacing is of great utility in many cardiovascular diseases, its effects on the combined cardiac cell therapy have not been established. We hypothesised that mesenchymal stem cell transplantation changes cardiac sympathetic nerve and gap junction, and concomitant pacing has additional biological effects.
Methods
We monitored cardiac rhythm for 4 weeks after human mesenchymal stem cell transplantation (1 × 107, epicardial injection) in 18 dogs in vivo, seven human mesenchymal stem cell with pacing, six human mesenchymal stem cell, and five sham, and evaluated the sympathetic innervation, nerve growth factor-β; tyrosine hydroxylase, angiogenesis, von Willebrand factor, and connexin43 expressions by real time (RT)–polymerase chain reaction and immunostaining. We also measured mRNA expressions of nerve growth factor-β, von Willebrand factor, and connexin43 in vitro culture of human mesenchymal stem cell with or without pacing.
Results
Human mesenchymal stem cell transplanted hearts expressed higher mRNA of nerve growth factor-β (p < 0.01) with sympathetic nerves (p < 0.05), higher mRNA of von Willebrand factor (p < 0.001) with angiogenesis (p < 0.001), but lower mRNA of connexin43 (p < 0.0001) with reduced gap junctions (p < 0.001) than sham. Pacing with human mesenchymal stem cell transplantation resulted in higher expression of mRNA of connexin43 (p < 0.02) and gap junctions (p < 0.001) compared with sham. In contrast, in vitro paced mesenchymal stem cell reduced expression of connexin43 mRNA (p < 0.02).
Conclusion
Human mesenchymal stem cell transplantation increased cardiac sympathetic innervation and angiogenesis, but reduced gap junction after transplanted in the canine heart. In contrast, concomitant electrical pacing increased gap junction expression by paracrine action.
Decision making in an emotionally conflicting situation is important in social life. We aimed to address the similarity and disparity of neural correlates involved in processing ambivalent stimuli in patients with schizophrenia and patients with depression. Behavioral task-related hemodynamic responses were measured using [15O]H2O positron emission tomography (PET) in 12 patients with schizophrenia and 12 patients with depression. The task was a modified word-stem completion task, which was designed to evoke ambivalence in forced and non-forced choice conditions. The prefrontal cortex and the cerebellum were found to show increased activity in the healthy control group. In the schizophrenia group, activity in these two regions was negligible. In the depression group, the pattern of activity was altered and a functional compensatory recruitment of the inferior parietal regions was suggested. The prefrontal cortex seems to be associated with the cognitive control to resolve the conflict toward the ambivalent stimuli, whereas the cerebellum reflects the sustained working memory to search for compromise alternatives. The deficit of cerebellar activation in the schizophrenia group might underlie the inability to search and consider compromising responses for conflict resolution. (JINS, 2009, 15, 990–1001.)
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.