We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors’ viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom probe tomography; x-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Advances in surface probe microscopy have been reviewed recently and, therefore, are not included [D.A. Bonnell et al.: Rev. Modern Phys. in Review]. In this study particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving material damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.
The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Σ3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.
One of the limiting parameters in high-resolution transmission electron microscopy (HRTEM) are the high values for the spherical aberration Cs of the objective lens, which are the reason, that for TEM's with field-emitter the point resolution at Scherzer defocus is about two times lower than the information limit. Another effect of Cs-values of about one mm is the rather large disc of least confusion, which contributes to a high amount of contrast derealization. Furthermore the images are very sensitive towards beam tilt. These disadvantages contribute to a difficult interpretation of HRTEM-images especially at interfaces and defects. In-situ applications as well as diffraction contrast experiments require a gap of at least ten mm between the pole pieces. For the present TEM's this degrades the resolution at an acceleration voltage of 200 kV to approximately 0.27 nm. Cs-correction offers the ability to combine high resolution with a large space for the sample, which can be used for in-situ experiments.
Recently, we have constructed a lens system for Cs-correction based on hexapole lenses for a commercial 200 kV instrument equipped with a field emission gun. This system allows choosing the Cs-value between +2.0 mm and -0.05 mm. The objective lens of the microscope has a Cs value of 1.2 mm resulting in a point resolution of 0.24 nm.
Transmission electron microscopes have been built along with and guided by technological opportunities since the last five decades. Even though there are some “workhorse” type of microscopes, these instruments are still more or less built from the technological viewpoint and less from the viewpoint of ease of use in a wide range of applications. On the other hand, leading edge applications are the drivers for the development and the use of leading edge technology. The result then is a “race horse” which is of very limited benefit in “Real world”.
During the last decade computers have been integrated to build microscope systems. in most cases, however, computers still have to deal with obsolete electron optical ray path designs and thus, have to be used more to overcome the problems of imperfect optics and bad design of ray paths than to provide optimized “Real world” capabilities.
Excellent linearity and high sensitivity have made SSCs the ideal image detector for almost every TEM application. Their ability to make high quality digital images available within fraction of seconds for further evaluation and processing in a PC, have made them a non-dispensable accessory for any modern TEM. However, despite their excellent characteristics, SSCs provide a restricted number of individual image points in respect to a negative, what is considered to be the main disadvantage of this detector. To compensate for this, CCDs with 2048x2048 pixel are available since some time. SSCs using these 2kx2k CCD arrays not only provide 4 times the pixel number but also offer a lot more options people have waiting for: e. g. highly resolved low-dose or ESI images with significantly improved signal to noise ratio, or higher resolved images for diffraction analysis and holographic reconstruction.