We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spinal muscular atrophy (SMA) is a devastating rare disease that affects individuals regardless of ethnicity, gender, and age. The first-approved disease-modifying therapy for SMA, nusinursen, was approved by Health Canada, as well as by American and European regulatory agencies following positive clinical trial outcomes. The trials were conducted in a narrow pediatric population defined by age, severity, and genotype. Broad approval of therapy necessitates close follow-up of potential rare adverse events and effectiveness in the larger real-world population.
Methods:
The Canadian Neuromuscular Disease Registry (CNDR) undertook an iterative multi-stakeholder process to expand the existing SMA dataset to capture items relevant to patient outcomes in a post-marketing environment. The CNDR SMA expanded registry is a longitudinal, prospective, observational study of patients with SMA in Canada designed to evaluate the safety and effectiveness of novel therapies and provide practical information unattainable in trials.
Results:
The consensus expanded dataset includes items that address therapy effectiveness and safety and is collected in a multicenter, prospective, observational study, including SMA patients regardless of therapeutic status. The expanded dataset is aligned with global datasets to facilitate collaboration. Additionally, consensus dataset development aimed to standardize appropriate outcome measures across the network and broader Canadian community. Prospective outcome studies, data use, and analyses are independent of the funding partner.
Conclusion:
Prospective outcome data collected will provide results on safety and effectiveness in a post-therapy approval era. These data are essential to inform improvements in care and access to therapy for all SMA patients.
To outline features of the neurologic examination that can be performed virtually through telemedicine platforms (the virtual neurological examination [VNE]), and provide guidance for rapidly pivoting in-person clinical assessments to virtual visits during the COVID-19 pandemic and beyond.
Methods:
The full neurologic examination is described with attention to components that can be performed virtually.
Results:
A screening VNE is outlined that can be performed on a wide variety of patients, along with detailed descriptions of virtual examination maneuvers for specific scenarios (cognitive testing, neuromuscular and movement disorder examinations).
Conclusions:
During the COVID-19 pandemic, rapid adoption of virtual medicine will be critical to provide ongoing and timely neurological care. Familiarity and mastery of a VNE will be critical for neurologists, and this article outlines a practical approach to implementation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.