We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inflammation and infections such as malaria affect estimates of micronutrient status. Medline, Embase, Web of Science, Scopus and the Cochrane library were searched to identify studies reporting mean concentrations of ferritin, hepcidin, retinol or retinol binding protein in individuals with asymptomatic or clinical malaria and healthy controls. Study quality was assessed using the US National Institute of Health tool. Random effects meta-analyses were used to generate summary mean differences. In total, forty-four studies were included. Mean ferritin concentrations were elevated by: 28·2 µg/l (95 % CI 15·6, 40·9) in children with asymptomatic malaria; 28·5 µg/l (95 % CI 8·1, 48·8) in adults with asymptomatic malaria; and 366 µg/l (95 % CI 162, 570) in children with clinical malaria compared with individuals without malaria infection. Mean hepcidin concentrations were elevated by 1·52 nmol/l (95 % CI 0·92, 2·11) in children with asymptomatic malaria. Mean retinol concentrations were reduced by: 0·11 µmol/l (95 % CI −0·22, −0·01) in children with asymptomatic malaria; 0·43 µmol/l (95 % CI −0·71, −0·16) in children with clinical malaria and 0·73 µmol/l (95 % CI −1·11, −0·36) in adults with clinical malaria. Most of these results were stable in sensitivity analyses. In children with clinical malaria and pregnant women, difference in ferritin concentrations were greater in areas with higher transmission intensity. We conclude that biomarkers of iron and vitamin A status should be statistically adjusted for malaria and the severity of infection. Several studies analysing asymptomatic infections reported elevated ferritin concentrations without noticeable elevation of inflammation markers, indicating a need to adjust for malaria status in addition to inflammation adjustments.
To report the one-year findings of the UK national registry of ENT surgeons with suspected or confirmed coronavirus disease 2019, and the results of a survey on the coronavirus disease 2019 experience of UK ENT trainees.
Method
An online registry was created in April 2020. A separate survey was circulated electronically to all members of the Association of Otolaryngologists in Training.
Results
The registry recorded 98 clinicians with confirmed or suspected coronavirus disease 2019. The majority of infections were reported in the first wave of spring 2020. Two ENT surgeons were hospitalised and one died. The majority suspected workplace exposure, with a significant proportion attributing this to a lack of personal protective equipment at a time before formal guidance had been introduced. Of the ENT trainees surveyed, almost one-third believed that they had contracted coronavirus disease 2019.
Conclusion
This highlights the importance of ongoing risk-reduction measures, including optimal personal protective equipment and vaccination.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers
$270 \,\mathrm{deg}^2$
of an area covered by the Dark Energy Survey, reaching a depth of 25–30
$\mu\mathrm{Jy\ beam}^{-1}$
rms at a spatial resolution of
$\sim$
11–18 arcsec, resulting in a catalogue of
$\sim$
220 000 sources, of which
$\sim$
180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
This study aimed to measure the duration and recovery rate of olfactory loss in patients complaining of recent smell loss as their prominent symptom during the coronavirus disease 2019 outbreak.
Method
This was a prospective telephone follow-up observational study of 243 participants who completed an online survey that started on 12 March 2020.
Results
After a mean of 5.5 months from the loss of smell onset, 98.3 per cent of participants reported improvement with a 71.2 per cent complete recovery rate after a median of 21 days. The chance of complete recovery significantly decreased after 131 days from the onset of loss of smell (100 per cent sensitive and 97.7 per cent specific). Younger age and isolated smell loss were associated with a rapid recovery, whereas accompanying rhinological and gastrointestinal symptoms were associated with longer loss of smell duration.
Conclusion
Smell loss, occurring as a prominent symptom during the coronavirus disease 2019 pandemic, showed a favourable outcome. However, after 5.5 months from the onset, around 10 per cent of participants still complained of moderate or severe hyposmia.
Adaptive thermogenesis (AT) has been proposed to be a compensatory response that may resist weight loss (WL) and promote weight regain. This systematic review examined the existence of AT in adults after a period of negative energy balance (EB) with or without a weight stabilisation phase. Studies published until 15 May 2020 were identified from PubMed, Cochrane Library, EMBASE, MEDLINE, SCOPUS and Web of Science. Inclusion criteria included statistically significant WL, observational with follow-up or experimental studies, age > 18y, sample size ≥10 participants, intervention period ≥ 1week, published in English, objective measures of total daily energy expenditure (EE) (TDEE), resting EE (REE) and sleeping EE(SEE). The systematic review was registered at PROSPERO (2020 CRD42020165348). A total of thirty-three studies comprising 2528 participants were included. AT was observed in twenty-seven studies. Twenty-three studies showed significant values for AT for REE (82·8 %), four for TDEE (80·0 %) and two for SEE (100 %). A large heterogeneity in the methods used to quantify AT and between subjects and among studies regarding the magnitude of WL and/or of AT was reported. Well-designed studies reported lower or non-significant values for AT. These findings suggest that although WL may lead to AT in some of the EE components, these values may be small or non-statistically significant when higher-quality methodological designs are used. Furthermore, AT seems to be attenuated, or non-existent, after periods of weight stabilisation/neutral EB. More high-quality studies are warranted not only to disclose the existence of AT but also to understand its clinical implications on weight management outcomes.
We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation.
Olfactory dysfunction represents one of the most frequent symptoms of coronavirus disease 2019, affecting about 70 per cent of patients. However, the pathogenesis of the olfactory dysfunction in coronavirus disease 2019 has not yet been elucidated.
Case report
This report presents the radiological and histopathological findings of a patient who presented with anosmia persisting for more than three months after infection with severe acute respiratory syndrome coronavirus-2.
Conclusion
The biopsy demonstrated significant disruption of the olfactory epithelium. This shifts the focus away from invasion of the olfactory bulb and encourages further studies of treatments targeted at the surface epithelium.
In order to maximize the utility of future studies of trilobite ontogeny, we propose a set of standard practices that relate to the collection, nomenclature, description, depiction, and interpretation of ontogenetic series inferred from articulated specimens belonging to individual species. In some cases, these suggestions may also apply to ontogenetic studies of other fossilized taxa.
The long-term recovery rate of chemosensitive functions in coronavirus disease 2019 patients has not yet been determined.
Method
A multicentre prospective study on 138 coronavirus disease 2019 patients was conducted. Olfactory and gustatory functions were prospectively evaluated for 60 days.
Results
Within the first 4 days of coronavirus disease 2019, 84.8 per cent of patients had chemosensitive dysfunction that gradually improved over the observation period. The most significant increase in chemosensitive scores occurred in the first 10 days for taste and between 10 and 20 days for smell. At the end of the observation period (60 days after symptom onset), 7.2 per cent of the patients still had severe dysfunctions. The risk of developing a long-lasting disorder becomes significant at 10 days for taste (odds ratio = 40.2, 95 per cent confidence interval = 2.204–733.2, p = 0.013) and 20 days for smell (odds ratio = 58.5, 95 per cent confidence interval = 3.278–1043.5, p = 0.005).
Conclusion
Chemosensitive disturbances persisted in 7.2 per cent of patients 60 days after clinical onset. Specific therapies should be initiated in patients with severe olfactory and gustatory disturbances 20 days after disease onset.
Necrotising otitis externa is a progressive infection of the external auditory canal which extends to affect the temporal bone and adjacent structures. Progression of the disease process can result in serious sequelae, including cranial nerve palsies and death. There is currently no formal published treatment guideline.
Objective
This study aimed to integrate current evidence and data from our own retrospective case series in order to develop a guideline to optimise necrotising otitis externa patient management.
Methods
A retrospective review of necrotising otitis externa cases within NHS Lothian, Scotland, between 2013 and 2018, was performed, along with a PubMed review.
Results
Prevalent presenting signs, symptoms and patient demographic data were established. Furthermore, features of cases associated with adverse outcomes were defined. A key feature of the guideline is defining at-risk patients with initial intensive treatment. Investigations and outcomes are assessed and treatment adjusted appropriately.
Conclusion
This multi-departmental approach has facilitated the development of a succinct, systematic guideline for the management of necrotising otitis externa. Initial patient outcomes appear promising.
Introduction: Emergency department (ED) crowding is a major problem across Canada. We studied the ability of artificial intelligence methods to improve patient flow through the ED by predicting patient disposition using information available at triage and shortly after patients’ arrival in the ED. Methods: This retrospective study included all visits to an urban, academic, adult ED between May 2012 and June 2019. For each visit, 489 variables were extracted including triage data that had been collected for use in the Canadian Triage Assessment Scale (CTAS) and information regarding laboratory tests, radiological tests, consultations and admissions. A training set consisting of all visits from April 2012 up to December 2018 was used to train 5 classes of machine learning models to predict admission to the hospital from the ED. The models were trained to predict admission at the time of the patient's arrival in the ED and every 30 minutes after arrival until 6 hours into their ED stay. The performance of models was compared using the area under the ROC curve (AUC) on a test set consisting of all visits from January 2019 to June 2019. Results: The study included 536,332 visits and the admission rate was 15.0%. Gradient boosting models generally outperformed other machine learning models. A gradient boosting model using all available data at 2 hours after patient arrival in the ED yielded a test set AUC 0.92 [95% CI 0.91-0.93], while a model using only data available at triage yielded an AUC 0.90 [95% CI 0.89-0.91]. The quality of predictions generally improved as predictions were made later in the patient's ED stay leading to an AUC 0.95 [95% CI 0.93-0.96] at 6 hours after arrival. A gradient boosting model with 20 variables available at 2 hours after patient arrival in the ED yielded an AUC 0.91 [95% CI 0.89-0.93]. A gradient boosting model that makes predictions at 2 hours after arrival in ED using only variables that are available at all EDs in the province of Quebec yielded an AUC 0.91 [95% 0.89-0.92]. Conclusion: Machine learning can predict admission to a hospital from the ED using variables that area collected as part of routine ED care. Machine learning tools may potentially be used to help ED physicians to make faster and more appropriate disposition decisions, to decrease unnecessary testing and alleviate ED crowding.
We present a detailed analysis of the radio galaxy PKS
$2250{-}351$
, a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and IR data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS
$2250{-}351$
lies at
$z=0.2115$
in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, ‘red and dead’ elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-IR emission. Assuming it lies on the local M–
$\sigma$
relation, it has an Eddington accretion rate of
$\lambda_{\rm EDD}\sim 0.014$
. We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission (
${\sim} 300\,$
Myr), the accretion has switched from an inefficient advection-dominated mode to a thin disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS
$2250{-}351$
lying to the west of the densest concentration of galaxies in Abell 3936.
Meta-analyses of epidemiological data report that adults who carry a common polymorphism, the MTHFR 677C→T, in the gene encoding the folate-metabolising enzyme methylenetetrahydrofolate reductase (MTHFR) have a 40% increased risk of CVD and an 87% increased risk of hypertension. Riboflavin (vitamin B2), in its co-enzymatic form flavin adenine nucleotide (FAD), is required as a co-factor by MTHFR and previous trials in hypertensive patients have shown a blood pressure lowering response to riboflavin supplementation that is specific to individuals homozygous for this polymorphism (TT genotype). Low folate status is commonly reported in adults with the TT genotype however the effect of this genetic variant on riboflavin status has not previously been investigated. The aim of this study, therefore, was to investigate dietary intake and biomarker status of riboflavin by MTHFR genotype in Irish adults using data from the National Adult Nutrition Survey (2008–2010) (www.iuna.net).
It was found that 12% of the population had the TT genotype. As expected, there was no significant difference in riboflavin intake across the genotype (CC, CT or TT) groups. Similarly, no significant genotype differences in riboflavin status (EGRac) were observed (1.36 vs 1.37 vs 1.38 respectively). Overall, 61% of the total population had EGRac values > 1.3, indicative of low/deficient status with no significant difference observed between the genotype groups (60%,61% and 61%, respectively).
These data suggest that riboflavin status is not influenced by the C677T polymorphism in MTHFR in this cohort of nationally representative Irish adults. Further research is needed to see the impact of riboflavin status on blood pressure across the genotype groups in this nationally representative cohort of Irish adults.
We present a survey of modeling techniques used to describe and predict architected cellular metamaterials, and to optimize their topology and geometry toward tailoring their mechanical properties such as stiffness, strength, fracture toughness, and energy absorption. Architectures of interest include truss-, plate-, and shell-based networks with and without periodicity, whose effective mechanical behavior is simulated by tools such as classical finite elements, further scale-bridging techniques such as homogenization and concurrent scale-coupling, and effective continuum descriptions of the underlying discrete networks. In addition to summarizing advances in applying the latter techniques to improve the properties of metamaterials and featuring prominent examples of structure–property relations achieved this way, we also present recently introduced techniques to improve the optimization process toward a full exploitation of the available design space, accounting for both linear and nonlinear material behavior.
The first episode of psychosis is a critical period in the emergence of cardiometabolic risk.
Aims
We set out to explore the influence of individual and lifestyle factors on cardiometabolic outcomes in early psychosis.
Method
This was a prospective cohort study of 293 UK adults presenting with first-episode psychosis investigating the influence of sociodemographics, lifestyle (physical activity, sedentary behaviour, nutrition, smoking, alcohol, substance use) and medication on cardiometabolic outcomes over the following 12 months.
Results
Rates of obesity and glucose dysregulation rose from 17.8% and 12%, respectively, at baseline to 23.7% and 23.7% at 1 year. Little change was seen over time in the 76.8% tobacco smoking rate or the quarter who were sedentary for over 10 h daily. We found no association between lifestyle at baseline or type of antipsychotic medication prescribed with either baseline or 1-year cardiometabolic outcomes. Median haemoglobin A1c (HbA1c) rose by 3.3 mmol/mol in participants from Black and minority ethnic (BME) groups, with little change observed in their White counterparts. At 12 months, one-third of those with BME heritage exceeded the threshold for prediabetes (HbA1c >39 mmol/mol).
Conclusions
Unhealthy lifestyle choices are prevalent in early psychosis and cardiometabolic risk worsens over the next year, creating an important window for prevention. We found no evidence, however, that preventative strategies should be preferentially directed based on lifestyle habits. Further work is needed to determine whether clinical strategies should allow for differential patterns of emergence of cardiometabolic risk in people of different ethnicities.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
We measure the cosmic star formation history out to z = 1.3 using a sample of 918 radio-selected star-forming galaxies within the 2-deg2 COSMOS field. To increase our sample size, we combine 1.4-GHz flux densities from the VLA-COSMOS catalogue with flux densities measured from the VLA-COSMOS radio continuum image at the positions of I < 26.5 galaxies, enabling us to detect 1.4-GHz sources as faint as 40 μJy. We find that radio measurements of the cosmic star formation history are highly dependent on sample completeness and models used to extrapolate the faint end of the radio luminosity function. For our preferred model of the luminosity function, we find the star formation rate density increases from 0.017 M⊙ yr−1 Mpc−3 at z ∼ 0.225 to 0.092 M⊙ yr−1 Mpc−3 at z ∼ 1.1, which agrees to within 40% of recent UV, IR and 3-GHz measurements of the cosmic star formation history.