We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The drive to replace scarce and expensive Pt-based electrocatalysts for oxygen reduction reaction (ORR) has led to the development of a group of electrocatalysts composed of transition-metal ion centers coordinated with four nitrogen groups (M-N4). Among these, metal phthalocyanines (MPcs), due to low cost of preparation, highly conjugated structure as well as high thermal and chemical stability, have received a great interest. The catalytic activity of MPcs can be improved by employing conducting supports. Here, in this report, we have solvothermally synthesized graphene-supported zinc phthalocyanine nanostructures, and their ORR kinetics and mechanism have been investigated in neutral solution (pH = 7) by using the rotating disk electrode technique. The as-synthesized nanocomposite followed a 4e− reduction pathway. The onset potential (−0.04 V versus Ag/AgCl) found in this work can be comparable with other state-of-the-art material, demonstrating good performance in neutral solution. The fascinating performance leads the nanocomposite material toward future energy applications.
Dust vortices with a void at the centre are reported in this paper. The role of the spatial variation of the plasma potential in the rotation of dust particles is studied in a parallel plate glow discharge plasma. Probe measurements reveal the existence of a local potential minimum in the region of formation of the dust vortex. The minimum in the potential well attracts positively charged ions, while it repels the negatively charged dust particles. Dust rotation is caused by the interplay of the two oppositely directed ion drag and Coulomb forces. The balance between these two forces is found to play a major role in the radial confinement of the dust particles above the cathode surface. Evolution of the dust vortex is studied by increasing the discharge current from 15 to 20 mA. The local minimum of the potential profile is found to coincide with the location of the dust vortex for both values of discharge currents. Additionally, it is found that the size of the dust vortex as well as the void at the centre increases with the discharge current.
Rice has the lowest grain protein content (GPC) among cereals. Efforts have been made to improve GPC through the modified bulk-pedigree method of selection. A total of 1780 F8 recombinant lines were derived in the year 2013 from five different cross combinations involving two high-GPC landraces, namely ARC10075 and ARC10063, three high-yielding parents, namely Swarna, Naveen and IR64, and one parent, namely Sharbati, known for superior grain quality with high micronutrient content. Near-infrared spectroscopy was used to facilitate high-throughput selection for GPC. Significant selection differential, response to selection and non-significant differences between the predicted and observed response to selection for GPC and protein yield indicated the effectiveness of this selection process. This resulted in lines with high GPC, protein yield and desirable levels of amylose content. Further, based on high mean and stability for GPC and protein yield over the environments in the wet seasons of 2013, 2014 and the dry season of 2014, 12 elite lines were identified. Higher accumulation of glutelin fraction and non-significant change in prolamin/glutelin ratio in the grain suggested safe guarding of the nutritional value of rice grain protein of most of these identified lines. Since rice is the staple food of millions, the output of breeding for high GPC could have a significant role in alleviating protein malnutrition, especially in the developing world.
In this paper, case wise studies have been made to investigate the possibility of propagation of Rayleigh-type wave in a composite structure comprised of two transversely-isotropic material layers with viscoelastic effect. The common interface between the layers is considered to be rigid whereas the base has been considered as rigid, stress-free and yielding in three different cases (Case-I, II and III). Closed-form of frequency equation and damped velocity equation has been established analytically for propagation of Rayleigh-type wave in a composite structure for all three cases. In special cases, frequency equations and damped velocity equations for the case of composite structure with rigid, stress-free and yielding base have been found in well-agreement to the established standard results pre-existing in the literature. Numerical and graphical computation of phase and damped velocity of Rayleigh-type wave propagating in the composite structure comprised of double transversely-isotropic viscoelastic Taylor sandstone material layers (Model-I) and double isotropic viscoelastic material layers (Model-II) have been carried out. Significant effect of anisotropy and width ratio of layers, dilatational and volume viscoelasticity associated with viscoelasticity of layer medium and yielding parameter associated with yielding base of composite structure on phase and damped velocities of Rayleigh-type wave for the considered models have been traced out. The comparative study has been performed to unravel the effect of viscoelasticity over elasticity and anisotropy over isotropy in the present problem.
Measurements of local plasma parameters in dusty plasma are crucial for understanding
the physics issues related to such systems. The Langmuir probe, a small electrode
immersed in the plasma, provides such measurements. However, designing of a Langmuir
probe system in a dusty plasma environment demands special consideration. First, the
probe has to be miniaturized enough so that its perturbation on the ambient dust
structure is minimal. At the same time, the probe dimensions must be such that a
well-defined theory exists for interpretation of its characteristics. The associated
instrumentation must also support the measurement of current collected by the probe
with high signal to noise ratio. The most important consideration, of course, comes
from the fact that the probes are prone to dust contamination, as the dust particles
tend to stick to the probe surface and alter the current collecting area in
unpredictable ways. This article describes the design and operation of a Langmuir
probe system that resolves these challenging issues in dusty plasma. In doing so,
first, different theories that are used to interpret the probe characteristics in
collisionless as well as in collisional regimes are discussed, with special emphasis
on application. The critical issues associated with the current–voltage
characteristics of Langmuir probe obtained in different operating regimes are
discussed. Then, an algorithm for processing these characteristics efficiently in
presence of ion-neutral collisions in the probe sheath is presented.
Bats are known to be reservoirs of several medically important viruses including lyssaviruses. However, no systematic surveillance for bat rabies has been carried out in India, a canine rabies endemic country with a high burden of human rabies. Surveillance for rabies virus (RABV) infection in bats was therefore carried out in Nagaland, a north-eastern state in India at sites with intense human–bat interfaces during traditional bat harvests. Brain tissues and sera from bats were tested for evidence of infection due to RABV. Brain tissues were subjected to the fluorescent antibody test for detection of viral antigen and real-time reverse transcriptase PCR for presence of viral RNA. Bat sera were tested for the presence of rabies neutralizing antibodies by the rapid fluorescent focus inhibition test. None of the bat brains tested (n = 164) were positive for viral antigen or viral RNA. However, rabies neutralizing antibodies were detected in 4/78 (5·1%) bat sera tested, suggesting prior exposure to RABV or related lyssaviruses. The serological evidence of lyssaviral infection in Indian bats may have important implications in disease transmission and rabies control measures, and warrant extensive bat surveillance to better define the prevalence of lyssaviral infection in bats.
Assumption that the common interfaces of the media are perfectly bonded may not be always true. Situation may arise that composition of the two medium may be responsible for weakening the contact between them. So, it becomes obligatory to consider a loosely bonded interface in such cases which may affect the propagation of elastic waves through them. This paper thrashes out the propagation of torsional surface wave in an initially stressed visco-elastic layer sandwiched between upper and lower initially stressed dry-sandy Gibson half-spaces, theoretically. Both the upper and lower dry-sandy Gibson half-spaces are considered to be loosely-bonded with the sandwiched layer. Mathematical model is proposed and solution in terms of Whittaker's and Bessel's function is obtained. Velocity equation is obtained in closed form, its real part deals with the dispersion phenomenon whereas its imaginary part provides the damping characteristics. Influence of heterogeneities, sandiness, gravity parameters, initial-stresses, loose-bonding and internal-friction on the phase and damped velocities of torsional wave are computed numerically and depicted graphically. Deduced dispersion equation and damped velocity equation matches with classical Love-wave equation and vanishes identically for the isotropic case respectively.
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n ⩽ 1%, Luniform ~ 120 cm at argon filling pressure of ~10−4 mbar and axial magnetic field of B = 1090 G.
A class of compact cold stars in the presence of strange matter is obtained for a pseudo-spheroidal geometry. Considering the strange matter equation of state $p = \frac{1}{3}(\rho-4B)$ with pressure anisotropy described by Vaidya-Tikekar metric, we determine the parameter B both inside and on the surface of the star for different values of anisotropy parameter α. In the anisotropic case, we note that a stable model of a compact star may be realized.
Inverse Compton scattering is a promising method to implement a high brightness, ultra-short, energy tunable X-ray source at accelerator facilities. We have developed an inverse Compton backscattering X-ray source driven by the multi-10 TW laser installed at Daresbury. Hard X-rays, with spectral peaks ranging from 15 to 30 keV, depending on the scattering geometry, will be generated through the interaction of laser pulses with electron bunches delivered by the energy recovery linac machine, initially known as energy recovery linac prototype and subsequently renamed accelerators and lasers in combined experiments. X-ray pulses containing 9 × 107 photons per pulse will be created from head-on collisions, with a pulse duration comparable to the incoming electron bunch length. For transverse collisions 8 × 106 photons per pulse will be generated, where the laser pulse transit time defines the X-ray pulse duration. The peak spectral brightness is predicted to be ~1021 photons/(s mm2 mrad2 0.1% Δλ/λ).
Chattopadhyay et al. [Biosystems (2003),
68, pp. 5-17] proposed and analyzed an N – P model in the presence
of viral infection on phytoplankton population. They studied the
dynamics under the constant nutrient input. The present paper deals
with the problem with seasonal variability on nutrient input. We use
a general periodic function for nutrient input. We observe the
dynamics of the system by considering (i) the infected phytoplankton
consumes nutrient and (ii) the infected phytoplankton is not in a
state to consume nutrient. Conditions for the persistence and
extinction of populations are worked out. Our numerical experiments
show that if the infected phytoplankton does not take nutrient then
susceptible phytoplankton coexists with the infected ones. But if
the infected phytoplankton consumes nutrient then there is a chance
for extinction of susceptible phytoplankton for high rate of
infection. We also observe that periodic nutrient input enforces the
system to enter into chaotic region.
The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be tetragonal with lattice parameters close to that reported for Zr2Ni. However, the composition of this phase is different as it contains other alloying additions. The interface layer close to the bulk metallic glass side contains nanocrystalline Zr2Cu phase embedded in the glassy matrix. Nanoindentation experiments indicate that the hardness of the crystalline layer, although less than the bulk metallic glass, is more than the Zr itself. Commensurately, tensile tests indicate that the failure of the welded samples occurs at the Zr side rather than at the weld joint.
HfO2 films were grown on SiO2/4H-SiC and SiON/4H-SiC layers by evaporation of metallic Hf in an electron beam deposition system followed by thermal oxidation. X-ray photoelectron spectroscopy confirmed the formation of HfO2 films. There is no evidence of formation of hafnium silicide or carbon pile up at the surface as well as at the interfacial layer. Electrical measurements show the presence of fewer slow traps in the HfO2/SiON gate dielectric stack on 4H-SiC and comparable values of interface state density. The HfO2/SiON stack layer improves leakage current characteristics with a higher breakdown field and has better reliability under electrical stress.
Thin films with a nominal composition close to Ti62.5Si37.5 were deposited on NaCl substrate at room temperature by pulsed laser ablation to study the evolution of the intermetallic compound Ti5Si3 using a combination of high-resolution and in situ transmission electron microscopy. The as-deposited amorphous films contain Ti-rich clusters, which influence the phase evolution and the decomposition behavior of the amorphous film. These clusters influence the nucleation of a metastable fcc Ti solid solution (ao = 0.433 nm) with composition richer in Ti than Ti62.5Si37.5 as the first phase to crystallize at 773 K. The Ti5Si3 nanocrystals form later, and even at 1073 K they coexist with fine fcc Ti-rich nanocrystals. Subsequent Ar+ ion-milling of the crystallized film results in a loss of silicon. The composition change leads to the dissolution of the Ti5Si3 nanocrystals and evolution of a new metastable Ti-rich fcc phase (ao= 0.408 nm).
We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.
A contender for future generations of CMOS technology is the strained silicon (S-Si) MOSFET. The mobility enhancement in S-Si can be exploited to maintain the performance enhancements demanded by Moore's law with reduced critical dimensions. S-Si is obtained by growth of a thin Si layer over a thick virtual substrate (VS) of relaxed silicon-germanium (SiGe). The mobility of a surface channel MOSFET is dependent on the quality of the silicon-oxide (Si/SiO2) interface. Ge may out diffuse from the virtual substrate to the oxide interface causing an increase in trapping density. As the Ge content in the virtual substrate increases surface roughness also increases. These phenomena both lead to a reduction in mobility.
The study of a matrix of devices having variable Ge composition and S-Si thickness is crucial in deconvolving the contributions of Ge diffusion and wafer cross-hatching roughness on electrical parameters. Increasing VS Ge composition increases the Ge concentration at the SSi/SiO2 interface and cross-hatching amplitude whereas reducing S-Si channel thickness only increases Ge concentration at the S-Si/SiO2 interface and does not increase cross-hatch amplitude. Interface state density, drive current, gate leakage current, transconductance and carrier mobility data are presented for this two-dimensional space of VS composition and S-Si thickness. The relative importance of Ge diffusion and cross-hatching roughness can be seen in this data. The results of this study indicate a lower limit of 7 nm for the S-Si thickness and an upper limit of approximately 20 % Ge in the virtual substrate for the current processing technology. Understanding the performance-limiting mechanisms in S-Si is crucial in the optimisation of VS Ge composition and S-Si thickness for current and future generations of S-Si CMOS.
Silicon nanotips, grown via electron cyclotron resonance plasma chemical vapour deposition, with apex diameters of ∼2nm and lengths of 1000 nm and densities of 1011/cm2 were used as a new substrate for surface enhanced Raman spectroscopy. Ion beam sputtered gold and silver self assemble on these substrates as nanoparticulates of 4–10 nm diameter and these metallic nanoparticulates assist in the surface enhancement of Raman signals of analytes. Molecules such as Rhodamine 6G and bis-Pyridyl ethylene of varied concentrations, in the range of 10-6-10-10 M, has been studied on these substrates and enhancements in the range of 106-108 were observed.
Epitaxial thin films of PbZr0.52Ti0.48O3 (PZT) were synthesized successfully on SrRuO3/SrTiO3/MgO/TiN/Si heterostructures by pulsed laser deposition. The films were single phase and had (001) orientation. The deposition parameters were varied to obtain the best epitaxial layer for each of the compounds. Transmission electron microscopy indicated good epitaxy for the entire heterostructure and sharp interfaces between the epilayers. Dielectric and P–E hysteresis loop measurements were carried out with evaporated Ag electrodes. The dielectric constant for the films was found to be between 400–450. The value of saturation polarization Ps was between 55–60 μC/cm2, and the coercive field Ec varied from 60–70 kV/cm. Integration of PZT films with silicon will be useful for future memory and micromechanical devices.
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.