Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T10:32:16.702Z Has data issue: false hasContentIssue false

3 - Differentiable group actions

Published online by Cambridge University Press:  05 July 2016

C. T. C. Wall
Affiliation:
University of Liverpool
Get access

Summary

We begin by recalling the definitions of Lie groups, of group actions, and of smooth actions, and establish some elementary properties.

Although the centre of our interest is in actions of compact (including finite) groups, the geometrical properties extend to all proper group actions.Akey step is the notion of slice. We establish the existence of slices for arbitrary proper actions. This leads at once to a local model for a proper smooth actions, which is the basis for all the subsequent results.

We show that the development of basic results in §1.1 can be parallelled in the group action situation: we have covers by coordinate neighbourhoods, partitions of unity, an approximation lemma, and invariant Riemannian metrics. There is also a theorem on the existence of an equivariant embedding in Euclidean space (with an orthogonal action), which applies when the group is compact.

We continue by defining orbit types, and the stratification of the manifold by orbit types. This stratification is locally finite and smoothly locally trivial. One consequence is that if the manifold is connected, one orbit type is dense and open: orbits of this type are called principal orbits. We give a model for a neighbourhood of a stratum, and proceed to an analysis of the case with two strata.

We conclude with examples.

Lie groups

We recall from §1.3 that a Lie group is a smooth manifold G, which is also a group, such that the group operations are smooth maps GG, G × GG.

Important examples are the general linear groups and of nonsingular m × m real, respectively complex, matrices, which are open submanifolds of the vector space of all matrices. We also use the notation GL(V) for the group of linear endomorphisms of the vector space V.

A Lie subgroup is a smooth submanifold which is also a subgroup. Any subgroup of a Lie group G which is a closed subset is a Lie subgroup. This result is not trivial: a proof is given, for example, in [146, Theorem 4.1] or in [148, §3.1].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×