Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-23T08:31:45.865Z Has data issue: false hasContentIssue false

3 - Aerial Wi-Fi Networks

Published online by Cambridge University Press:  17 November 2017

Evşen Yanmaz
Affiliation:
Alpen-Adria-Universität Klagenfurt
Samira Hayat
Affiliation:
Alpen-Adria–Universität at Klagenfurt
Kamesh Namuduri
Affiliation:
University of North Texas
Serge Chaumette
Affiliation:
Université de Bordeaux
Jae H. Kim
Affiliation:
Boeing Research and Technology
James P. G. Sterbenz
Affiliation:
University of Kansas
Get access

Summary

Introduction

Autonomous unmanned aerial vehicles (UAVs) are considered with increasing interest in a diverse set of civil and commercial applications, such as environmental and natural disaster monitoring, border surveillance, emergency assistance, search and rescue missions, delivery of goods, and construction [208, 132, 362, 265, 434, 110, 280, 163]. Use of single or multiple UAVs as communication relays or aerial base stations for network provisioning in emergency situations and for public safety communications has been of particular interest due to UAVs fast deployment and large coverage capabilities [331, 193, 206, 429]. The deployed aerial platform size and the number of necessary platforms are key factors in determining the on-board communication system in addition to the coverage and capacity requirements [73].

Small-scale multi-rotors are of particular interest in practice due to their ease of deployment, low acquisition and maintenance costs, high maneuverability, and ability to hover. Research and development of small-scale UAVs focused initially on control issues, such as flight stability, maneuverability, and robustness, followed by designing autonomous vehicles capable of waypoint flights with minimal user intervention. Considering the limited flight time and payload capacity of these vehicles and the area sizes the aforementioned applications might span, the interest is shifting more and more toward collaborative multiple UAV systems for efficient and successful missions. The number of UAVs might be from tens to hundreds traveling over tens of meters to kilometers for different applications (see Figure 3.1 for an illustration).

Wireless communication is an essential factor not only for network provisioning with UAVs but also for successful deployment of systems consisting of multiple small-scale UAVs. It is highly likely that high-performance links and connectivity in three-dimensional space will be required for several applications (e.g., monitoring certain areas) with data delivery meeting a certain quality of service demands [35].The question arises as to which wireless technology should be employed for aerial networks that consist of air-to-ground and air-to-air links, and data needs to be delivered regardless of significant height and orientation differences. Taking into account the quality of service to be satisfied over diverse links and the high node mobility, it is not yet clear as to whether networking protocols developed for ground networks are readily deployable on UAV networks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×