Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T08:13:19.386Z Has data issue: false hasContentIssue false

15 - Imaging with Cooled CCD Cameras

Published online by Cambridge University Press:  05 June 2014

Ian Morison
Affiliation:
University of Manchester and Gresham College, London
Get access

Summary

The latest DSLR cameras can do a very good job of astro-imaging and can, of course, be used for general photography as well, so why go to the expense of buying a cooled CCD camera? The main reason lies in the word ‘cooled’. All imaging chips produce dark current noise which increases with exposure time and is also highly dependent on its temperature, that of a typical chip dropping by half for each drop of 6 degrees Celsius in temperature. So, if the chip is cooled by 30 degrees below ambient temperature, the dark current noise will have dropped by about 5 times, so allowing longer exposures to be taken before dark current noise becomes a problem. Given dark skies that do not suffer from light pollution, this can allow images to reveal faint nebulosity that would otherwise be lost in the noise. When significant light pollution is present, the exposure times, and hence the dark current contribution, have to be less, before the skylight becomes obtrusive, and so cooling does not confer as great an advantage. The latest chips have very low dark currents, and it is rarely worth cooling them down below about –20 C. This temperature can normally be reached with the single-stage Peltier cooling employed in CCD cameras aimed at the amateur market.

Chip Size

The dimensions of the CCD chip allied to the scope’s focal length dictate the field of view of the resulting images. The chip dimensions in millimetres divided by the focal length in millimetres give the field of view in radians. Multiplying this by 57.3 gives the field of view in degrees. So, obviously, a bigger chip will provide a bigger field of view. For example, my 80-mm refractor has a focal length of 550 mm, and this is used with a CCD camera whose sensor has dimensions of 18 × 13 mm. This gives a field of view of 1.9 × 1.4 degrees.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×