Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T07:05:16.239Z Has data issue: false hasContentIssue false

3 - Nanogaps and biomolecules

from Part I - Electronic components

Published online by Cambridge University Press:  05 September 2015

Paolo Motto
Affiliation:
Politecnico di Torino
Ismael Rattalino
Affiliation:
Politecnico di Torino
Alessandro Sanginario
Affiliation:
Politecnico di Torino
Valentina Cauda
Affiliation:
Politecnico di Torino
Gianluca Piccinini
Affiliation:
Politecnico di Torino
Danilo Demarchi
Affiliation:
Politecnico di Torino
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Characterization of molecular electronic transport is an active part of the research field in nanotechnology. The main underlying idea is to use single molecules as active elements in nanodevices [1]. As a consequence, the proper fabrication of a molecule–electrode contact is a crucial issue [2],[3] and several applications can be envisioned. For example, the variation of the electrical conduction of metal–molecule–metal junctions can be used in biosensing for electrochemical detection of different crucial biomarkers. Possible applications include biomedical diagnostics and the monitoring of biological systems. In particular, the detection of single proteins might become the starting point for monitoring drugs, developing clean energy systems, fabricating bio-optoelectronic transistors, and developing other innovative devices and systems.

The fabrication of nanogaps

Nanogap electrodes (NGEs, defined as a pair of electrodes separated by a nanometer-sized gap) are fundamental tools for characterizing the electric properties of material at the nanometer scale, or even at the molecular scale. They are also important building blocks for the fabrication of nanometer-sized devices and circuits.

Molecular-based devices possess unique advantages for electronic applications with respect to conventional components [4], such as lower cost, lower power dissipation and higher efficiency. Specific molecules can be not only recognized, but also self-assembled on such NGEs, thus leading to elaborate geometries for the study of distinct optical and electronic properties.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 11 - 33
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Keane, Z. K., Ciszek, J. W., Tour, J. M., Natelson, D., Nano Lett. 6, (2006), 1518.CrossRef
Moth-Poulsen, K., Bjrnholm, T., Nat. Nanotechnol. 4, (2009), 551.CrossRef
Zhu, X. Y., Surf. Sci. Rep. 56, (2004), 1.CrossRef
Heath, J. R., Ratner, M. A., Phys. Today 56, (2003), 43.CrossRef
Kornyshev, A., Kuznetsov, A. M., Ulstrup, J., Proc. Natl Acad. Sci. USA 103, (2006), 6799.CrossRef
Metzger, R. M., Chen, B., Hopfner, U. et al. Chem. Soc. 119, (1997), 10455.CrossRef
Collier, C. P., Mattersteig, G., Wong, E. W., et al. Science 289, (2000), 1172.CrossRef
Blum, A. S., Kushmerick, J. G., Long, D. P., et al. Nat. Mater. 4, (2005), 167.CrossRef
Park, H., Park, J., Lim, A. K. L., et al. Nature 407, (2000), 57.
Kubatkin, S., Danilov, A., Hjort, M., et al. Nature 425, (2003), 698.CrossRef
Yu, L. H., Natelson, D., Nano Lett. 4, (2004), 79.CrossRef
Kergueris, C., Bourgoin, J. P., Palacin, S., , D. et al. Phys. Rev. B 59, (1999), 12505.CrossRef
Saifullah, M. S. M., Ondarcuhu, T., Koltsov, D. K., Joachim, C., Welland, M. E., Nanotechnology 13, (2002), 659.CrossRef
Liang, W. J., Shores, M. P., Bockrath, M., Long, J. R., Park, H., Nature 417, (2002), 725.CrossRef
Qing, Q., Chen, F., Li, P. G., et al. Angew. Chem. Int. Ed. 44, (2005), 7771.CrossRef
Nagase, T., Kubota, T., Mashiko, S., Thin Solid Films 438, (2003), 374.CrossRef
Nagase, T., Kubota, T., Mashiko, S., Thin Solid Films 438, (2003), 374.CrossRef
Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., Tour, J. M., Science 278, (1997), 252CrossRef
Chen, W., Ahmed, H., Nakazoto, K., Appl. Phys. Lett. 66, (1995), 3383.CrossRef
Morpurgo, A. F., Marcus, C. M., Robinson, D. B., Appl. Phys. Lett. 74, (1999), 2084.CrossRef
Park, J., Pasupathy, A. N., Goldsmith, J. I., et al. Nature 417, (2002), 722.CrossRef
Notargiacomo, A., Foglietti, V., Cianci, E., et al. Nanotechnology 10, (1999), 458.CrossRef
Qin, L. D., Park, S., Huang, L., Mirkin, C. A., Science 309, (2005), 113.CrossRef
Hatzor, A., Weiss, P. S., Science 291, (2001), 1019.
Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J., McEuen, P. L., Appl. Phys. Lett. 75, (1999), 301.CrossRef
Strachan, D. R., Smith, D. E., Johnston, D. E., et al. Appl. Phys. Lett. (2005), 86, 043109.CrossRef
Mahapatro, A. K., Ying, J., Ren, T., Janes, D. B., Nano Lett. 8, (2008), 2131.CrossRef
Ghosh, S., Halimun, H., Mahapatro, A. K. et al. Appl. Phys. Lett. 87, (2005), 233509.CrossRef
Lambert, M. F., Goffman, M. F., Bourgoin, J. P., Hesto, P., Nanotechnology 14, (2003), 772.CrossRef
Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N., Ralph, D. C., Nano Lett. 6, (2006), 123.CrossRef
Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J., McEuen, P. L., Appl. Phys. Lett. 75, (1999), 301.CrossRef
Demarchi, D., Civera, P., Piccinini, G., Cocuzza, M., Perrone, D., Electrochim. Acta 54, (2009), 6003.CrossRef
Rattalino, I., Motto, P., Piccinini, G., Demarchi, D., Phys. Lett. A 376, (2012), 2134.CrossRef
Motto, P., Dimonte, A., Rattalino, I., et al. Nanoscale Res. Lett. 7, (2012), 113.CrossRef
Rattalino, I., Cauda, V., Motto, P., et al. RSC Adv. 2, (2012), 10985.CrossRef
Yu, H. B., Luo, Y., Beverly, K., et al. Angew. Chem. Int. Ed. 42, (2003), 5706CrossRef
Black, J. R., IEEE Trans. Electron Devices 16, (1969), 338.CrossRef
Johnston, D. E., Strachan, D. R., Johnson, A. T. C., Nano Lett. 7, (2007), 2774.CrossRef
De Orio, R. L., Ceric, H., Selberherr, S., Microelectron. Reliab. 50, (2010), 775.CrossRef
Schimschak, M., Krug, J., Comput. Phys. 188, (2003), 640.
Averbuch, A., Israeli, M., Nathan, M., Ravve, I., Phys. Rev. Lett. 78, (1997), 278.
Ortugani, T. O., Celik, A., Oren, E. E., Thin Solid Films 515, (2007), 2974.
Khenner, M., Averbuch, A., Israeli, M., Nathan, M., J. Comput. Phys. 170, (2001), 764.CrossRef
Ortugani, T. O., Oren, E. E., Int. J. Solids Struct. 42, (2005), 3918.
Ohring, M., J. Appl. Phys. 42, (1971), 2653.CrossRef
Mullins, W.W., J. Appl. Phys. 28, (1957), 333.CrossRef
Rosenberg, R., Ohring, M., J. Appl. Phys. 42, (1971), 5671.CrossRef
Trouwborst, M. L., Molen, S. J. V., Wees, B.J., J. Appl. Phys. 99, (2006), 114316.CrossRef
Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J., Tu, K. N., J. Appl. Phys. 321, (2008), 1066.
Strachan, D. R., Johnston, D. E., Guiton, B. S., et al. Phys. Rev. Lett. 100, (2008), 056805.CrossRef
Ogurtani, T. O., Oren, E. E., Int. J. Solids Struct. 42, (2005), 3918.CrossRef
Ohring, M., J. Appl. Phys. 42, (1971), 2653.CrossRef
Clementi, E., Raimondi, D. L., Reinhardt, W. P., J. Chem. Phys. 47, (1967), 1300.CrossRef
Valladares, L. D. L. S., Dominguez, A. B., et al. Vistas in Nanofabrication (CRC, 2012).Google Scholar
Datta, S., Quantum Transport: Atom to Transistor (Cambridge University Press, 2005).CrossRefGoogle Scholar
Strachan, D. R., Smith, D. E., Johnston, D. E., et al. Appl. Phys. Lett. 86, (2005), 043109.CrossRef
Blech, I. A., J. Appl. Phys. 47, (1976) 1203.CrossRef
Blech, I. A., Herring, C., Appl. Phys. Lett. 29, (1976), 131.CrossRef
Blech, I. A., Tai, K. L., Appl. Phys. Lett. 30, (1977), 387.CrossRef
Keane, Z. K., Ciszek, J. W., Tour, J. M., Natelson, D., Nano Lett. 6, (2006), 1518.CrossRef
Osorio, E. A., O’Neill, K., Stuhr-Hansen, N., et al. Adv. Mater. 19, (2007), 281.CrossRef
Hu, W. P., Jiang, J., Nakashima, H., et al. Phys. Rev. Lett. 96, (2006), 027801.CrossRef
Park, J. W., Pasupathy, A. N., Goldsmith, J. I., et al. Thin Solid Films 438, (2003), 457.CrossRef
Maruccio, G., Visconti, P., Arima, V., et al. Nano Lett. 3, (2003), 479.CrossRef
Seidel, R. V., Graham, A. P., Kretz, J., et al. Nano Lett. 5, (2005), 147.CrossRef
Oike, T., Kurata, T., Takimiya, K., et al. J. Am. Chem. Soc. 127, (2005), 15372.CrossRef
Sandberg, H. G. O., Frey, G. L., Shkunov, M. N., et al. Langmuir 18, (2002), 10176.CrossRef
Cocoletzi, V. S., Galicia-Luna, L. A., Elizalde-Solis, O., J. Chem. Eng. Data 50, (2005),1631.CrossRef
Forni, A., Sironi, M., Raimondi, M., Cooper, D. L., Gerratt, J., J. Phys. Chem. A 101, (1997), 4437.CrossRef
Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W., Tour, J. M., Appl. Phys. Lett., 78, (2001), 3735.CrossRef
Zhang, Y., Ye, Y., Li, Y., et al. THEOCHEM, 802, (2007), 53.CrossRef
Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., Tada, H., Nano Lett., 8, (2008), 1237.CrossRef
Marton, M. J., Nat. Med. 4, (1998), 1293.CrossRef
Marazza, G., Chianella, I., Mascini, M., Biosens. Bioelectron. 14, (1999), 43.CrossRef
Defillipo, K. A., Grayeski, M. L., Anal. Chim. Acta. 249, (1991), 155.CrossRef
Tansil, N. C., Gao, Z., Nano Today 1, (2006), 28.CrossRef
Hashioka, S., Saito, M., Tamiya, E., Matsumura, H., Appl. Phys. Lett. 85, (2004), 687.CrossRef
Doi, K., Nishioka, Y., Kawano, S., Comput. Theor. Chem. 999, (2012), 203.CrossRef
Roy, S., Chen, X., Li, M-H., et al. J. Am. Chem. Soc. 131, (2009), 12211.CrossRef
Kim, C-H., Jung, C., Lee, K-B., Park, H. G., Choi, Y-K., Nanotechnology 22, (2011), 135502.CrossRef
Shen, W., Deng, H., Ren, Y., Gao, Z., Biosens. Bioelectron. 43, (2013), 165.CrossRef
Liang, X., Chou, S. Y., Nano Lett. 8, (2008), 1472.CrossRef
Chang, K. S., Chang, C. K., Chou, S. F., Chen, C. Y., Biosens. Bioelectron. 22, (2007), 2914.CrossRef
Singh, K. V., Bhura, D. K., Nandamuri, G., et al. Langmuir 27, (2011), 13931.CrossRef
Marcon, L., Melnyk, O., Stialvenard, D., Biosens. Bioelectron. 23, (2008), 1185.CrossRef
Kim, S. K., Cho, H., Park, H. J., et al. Nanotechnology 20, (2009), 455502.CrossRef
Lee, C. S., Kim, S. K., Kim, M., Sensors 9, (2009), 7111.CrossRef
Gu, B., Park, T. J., Ahn, J. H., et al. Small 5, (2009), 2407.CrossRef
Im, M., Ahn, J. H., Han, J. W., et al. IEEE Sensors J. 11, (2011), 351.CrossRef
Choi, J. M., Han, J. W., Choi, S. J., Choi, Y. K., IEEE Trans. Electron Dev. 57, (2010), 3477.CrossRef
Alexander, K. D., Skinner, K., Zhang, S., Wei, H., Lopez, R., Nano Lett. 10, (2010), 4488.CrossRef
Smith, W. E., Chem. Soc. Rev. 37, (2008), 955.CrossRef
Chen, J., Qin, G., Wang, J., et al. Biosens. Bioelectron. 44, (2013), 191.CrossRef
Alessandrini, A., Facci, P., Metalloproteins electronics, in Nano and Molecular Electronics Handbook, Lyshevski, S. E., ed. (New York, USA: CRC Press, 2007), Chapter 14.Google Scholar
Artzy-Schnirman, A., Brod, E., Epel, M., et al. Nano Lett. 15, (2008), 3398.CrossRef
Alessandrini, A., Salerno, M., Frabboni, S., Facci, P., Appl. Phys. Lett. 86, (2005), 133902.CrossRef
Davis, J. J., Wang, N., Morgan, A., Zhang, T., Zhao, J., Farad. Discuss. 131, (2006), 167.CrossRef
Mentovich, E. D., Belgorodsky, B., Richter, S., J. Phys. Chem. Lett. 2, (2011), 1125.CrossRef
Gan, K. J., Tsai, C. S., Liang, D. S., Analog. Integr. Circ. Sig. Process. 62, (2010), 63.CrossRef
Maruccio, G., Biasco, A., Visconti, P., et al. Adv. Mater. 17, (2005), 816.CrossRef
Dimonte, A., Frache, S., Erokhin, V., et al. BioMacroMolecules 13, (2012), 3503.CrossRef
Tang, Q., Moon, H. K., Lee, Y., et al J. Am. Chem. Soc. 129, (2007), 11018.CrossRef
Chen, Y. S., Hong, M. Y., Huang, G. S., Nat. Nanotechnol. 7, (2012), 197.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×