Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T00:48:43.901Z Has data issue: false hasContentIssue false

Chapter 1 - A separate creation: diversity, distinctiveness and conservation of Australian wildlife

Published online by Cambridge University Press:  05 November 2014

David A. Nipperess
Affiliation:
Macquarie University, Sydney, NSW, Australia
Adam Stow
Affiliation:
Macquarie University, Sydney
Norman Maclean
Affiliation:
University of Southampton
Gregory I. Holwell
Affiliation:
University of Auckland
Get access

Summary

Summary

Australia is biologically diverse, with around 150 000 described species, representing perhaps 25% of the total number present. However, this biota is more notable for its endemism than its richness (e.g. 94% of Australian frog species are found nowhere else). Australia is distinctive, not only in terms of endemism, but also in terms of evolutionary adaptations (e.g. large hopping mammals) and ecological processes (e.g. nutrient cycling by fire). Distinctiveness is attributed to three principal factors: (1) a long period of geographic isolation; (2) the preponderance of ancient soils low in key nutrients; and (3) an increasingly arid and inherently unpredictable climate. Australia is also unfortunately distinctive in the scale of biodiversity loss since European settlement with 98 species and subspecies listed as extinct, and a further 1700 threatened with extinction. Both for historical extinctions and currently threatened species, habitat loss and introduced species are the key threats, while climate change is the emerging and possibly most significant threat of the twenty-first century. In the face of these perils, Australia’s distinctive wildlife needs special attention because it makes such a large contribution to the biodiversity and cumulative evolutionary history of the planet.

Introduction

Australia is a biologically unusual continent. This is easily shown by a few examples such as the presence of large hopping marsupials, the prevalence of fire-adapted vegetation, and the sheer diversity of arid-zone lizards. Entire groups of organisms are found nowhere else. Many more are largely confined to the Australian continent, with only a few representatives on nearby islands, such as New Guinea. While visiting Australia and pondering the unusual Australian animals, Charles Darwin wrote in his diary: “An unbeliever in everything beyond his own reason, might exclaim ‘Surely two distinct creators must have been at work …’” (p. 402 of Darwin, 2001). The Australian fauna was so different from that found in Europe, Asia or the Americas, it was as though it was created completely separately from that elsewhere. Of course, Darwin was essentially correct in that Australian wildlife, to a large extent, have been ‘created’ separately. This separateness, however, was not the work of a separate supernatural entity, but rather the result of a long period of independent evolution on an isolated continent subjected to significant and unusual environmental change.

Type
Chapter
Information
Austral Ark
The State of Wildlife in Australia and New Zealand
, pp. 1 - 23
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aplin, K. P. (2006). Ten million years of rodent evolution in Australasia: phylogenetic evidence and a speculative historical biogeography. In Evolution and Biogeography of Australasian Vertebrates. Oatlands: Auscipub, pp. 707–744.Google Scholar
Archer, M. and Fox, B. (1984). Background to vertebrate zoogeography in Australia. In Vertebrate Zoogeography and Evolution in Australasia. Carlisle: Hesperian Press, pp. 1–15.Google Scholar
Archer, M., Beck, R., Gott, M., et al. (2011). Australia’s first fossil marsupial mole (Notoryctemorphia) resolves controversies about their evolution and palaeoenvironmental origins. Proceedings Of The Royal Society Of London Series B – Biological Sciences, 278, pp. 1498–1506.CrossRefGoogle ScholarPubMed
Augee, M. L. and Fox, M. D. (2000). Biology of Australia and New Zealand. Frenchs Forest: Benjamin Cummings.Google Scholar
Austin, A., Yeates, D., Cassis, G., et al. (2004). Insects ‘Down Under’ – diversity, endemism and evolution of the Australian insect fauna: examples from select orders. Australian Journal Of Entomology, 43, pp. 216–234.CrossRefGoogle Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., et al. (2004). Assessing the causes of Late Pleistocene extinctions on the continents. Science, 306, pp. 70–75.CrossRefGoogle ScholarPubMed
Beadle, N. (1966). Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47, pp. 992–1007.CrossRefGoogle Scholar
Bowman, D. M. J. S. (1998). The impact of aboriginal landscape burning on the Australian biota. New Phytologist, 140, pp. 385–410.CrossRefGoogle Scholar
Bowman, D. M. J. S., Brown, G. K., Braby, M. F., et al. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography, 37, pp. 201–216.CrossRefGoogle Scholar
Bradshaw, C. J. A. (2012). Little left to lose: deforestation and forest degradation in Australia since European colonization. Journal of Plant Ecology, 5, pp. 109–120.CrossRefGoogle Scholar
Brook, B. W. and Bowman, D. M. J. S. (2004). The uncertain blitzkrieg of Pleistocene megafauna. Journal of Biogeography, 31, pp. 517–523.CrossRefGoogle Scholar
Buffon, G. L. L. (1761). Histoire Naturelle, Generale et Particuliere, vol. 9. Paris: Imprimerie Royale.Google Scholar
Burbidge, A. A. and McKenzie, N. L. (1989). Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biological Conservation, 50, pp. 143–198.CrossRefGoogle Scholar
Burney, D. A. and Flannery, T. F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology and Evolution, 20, pp. 395–401.CrossRefGoogle ScholarPubMed
Byrne, M. (2009). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 27, pp. 2576–2585.CrossRefGoogle Scholar
Byrne, M., Steane, D. A., Joseph, L., et al. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17, pp. 4398–4417.CrossRefGoogle ScholarPubMed
Byrne, M., Yeates, D. K., Joseph, L., et al. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography, 38, pp. 1635–1656.CrossRefGoogle Scholar
Cardillo, M. and Bromham, L. (2001). Body size and risk of extinction in Australian mammals. Conservation Biology, 15, pp. 1435–1440.CrossRefGoogle Scholar
Cardillo, M., Mace, G. M., Jones, K. E., et al. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309, pp. 1239–1241.CrossRefGoogle ScholarPubMed
Ceballos, G. and Ehrlich, P. R. (2009). Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences, 106, pp. 3841–3846.CrossRefGoogle ScholarPubMed
Chapman, A. D. (2009). Numbers of Living Species in Australia and the World. 2nd edn. Canberra: Australian Biological Resources Study.Google Scholar
Clavero, M., Brotons, L., Pons, P. and Sol, D. (2009). Prominent role of invasive species in avian biodiversity loss. Biological Conservation, 142, pp. 2043–2049.CrossRefGoogle Scholar
Coggan, N. (2012). Are native dung beetle species following mammals in the critical weight range towards extinction?Proceedings of the Linnaean Society of New South Wales, 134, pp. A5–A9.Google Scholar
Colhoun, E. A. (2000). Vegetation and climate change during the Last Interglacial–Glacial cycle in western Tasmania, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 155, pp. 195–209.CrossRefGoogle Scholar
Crisp, M. D., Burrows, G. E., Cook, L. G., Thornill, A. H. and Bowman, D. M. J. S. (2011). Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications, 2, pp. 193.CrossRefGoogle ScholarPubMed
Crisp, M. D., Cook, L. G. and Steane, D. A. (2004). Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Philosophical Transactions of the Royal Society of London: Biological Sciences, 359, pp. 1551–1571.CrossRefGoogle ScholarPubMed
Darwin, C. 2001. Charles Darwin’s Beagle Diary. Cambridge: Cambridge University Press.Google Scholar
Dawson, T. J. and Dawson, L. (2006). Evolution of arid Australia and consequences for vertebrates. In Evolution and Biogeography of Australasian Vertebrates. Oatlands: Auscipub, pp. 51–70.Google Scholar
Edwards, S. and Boles, W. E. (2002). Out of Gondwana: the origin of passerine birds. Trends in Ecology and Evolution, 17, pp. 347–349.CrossRefGoogle Scholar
Flannery, T. F. (1991). The mystery of the meganesian meat-eaters. Australian Natural History, 23, pp. 722–729.Google Scholar
Flannery, T. F. (1995). Mammals of New Guinea. Revised and updated edn. Chatswood: Reed Books.Google Scholar
Fritz, S. A., Bininda-Emonds, O. R. P. and Purvis, A. (2009). Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters, 12, pp. 538–549.CrossRefGoogle ScholarPubMed
Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, pp. 220–227.CrossRefGoogle ScholarPubMed
Gillespie, R. (2006). Dating the first Australians. Radiocarbon, 44, pp. 455–472.CrossRefGoogle Scholar
Gillespie, R., Brook, B. W. and Baynes, A. (2006). Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa, 30 (Suppl. 1), pp. 163–186.CrossRefGoogle Scholar
Godfray, H. C. J. (2002). Challenges for taxonomy. Nature, 417, pp. 17–19.CrossRefGoogle ScholarPubMed
Gray, R. D., Drummond, A. J. and Greenhill, S. J. (2009). Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science, 323, pp. 479–483.CrossRefGoogle ScholarPubMed
Grün, R., Eggins, S., Aubert, M., et al. (2010). ESR and U-series analyses of faunal material from Cuddie Springs, NSW, Australia: implications for the timing of the extinction of the Australian megafauna. Quaternary Science Reviews, 29, pp. 596–610.CrossRefGoogle Scholar
Hand, S. J. (2006). Bat beginnings and biogeography: the Australasian record. In Evolution and Biogeography of Australasian Vertebrates. Oatlands: Auscipub, pp. 673–705.Google Scholar
Harvey, K. J., Nipperess, D. A., Britton, D. R. and Hughes, L. (2012). Australian family ties: does a lack of relatives help invasive plants escape natural enemies?Biological Invasions, 14, pp. 2423–2434.CrossRefGoogle Scholar
Hawkins, B. A., Diniz-Filho, J. A. F. and Soeller, S. A. (2005). Water links the historical and contemporary components of the Australian bird diversity gradient. Journal of Biogeography, 32, pp. 1035–1042.CrossRefGoogle Scholar
Hindwood, K. A. 1940. The birds of Lord Howe Island. Emu, 40, pp. 1–86.CrossRefGoogle Scholar
Hobbs, R. J., Arico, S., Aronson, J., et al. (2006). Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15, pp. 1–7.CrossRefGoogle Scholar
Holt, B. G., Lessard, J-P, Borregaard, M. K., et al. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, pp. 74–78.CrossRefGoogle Scholar
Hugall, A. F., Foster, R., Hutchinson, M. and Lee, M. S. Y. (2008). Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biological Journal Of The Linnean Society, 93, pp. 343–358.CrossRefGoogle Scholar
Johnson, C. (2006). Australia’s Mammal Extinctions: a 50,000 Year History. Port Melbourne: Cambridge University Press.Google Scholar
Johnson, C. N. (2009). Ecological consequences of Late Quaternary extinctions of megafauna. Proceedings Of The Royal Society Of London Series B – Biological Sciences, 276, pp. 2509–2519.CrossRefGoogle ScholarPubMed
Johnson, C. N. and Brook, B. W. (2011). Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia. Proceedings Of The Royal Society Of London Series B – Biological Sciences, 278, pp. 3748–3754.CrossRefGoogle ScholarPubMed
Johnson, C. N. and Isaac, J. L. (2009). Body mass and extinction risk in Australian marsupials: The ‘Critical Weight Range’ revisited. Austral Ecology, 34, pp. 35–40.CrossRefGoogle Scholar
Johnson, C. N. and Prideaux, G. J. (2004). Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austral Ecology, 29, pp. 553–557.CrossRefGoogle Scholar
Johnson, C. N. and Wroe, S. (2003). Causes of extinction of vertebrates during the Holocene of mainland Australia: arrival of the dingo, or human impact?The Holocene, 13, pp.941–948.CrossRefGoogle Scholar
Kershaw, A. P., Clark, J. S., Gill, A. M. and D’Costa, D. M. (2002). A history of fire in Australia. In Flammable Australia: the Fire Regimes and Biodiversity of a Continent. Cambridge: Cambridge University Press, pp. 3–25.Google Scholar
Kohen, J. (1995). Aboriginal Environmental Impacts. Sydney: Universityof New South Wales Press.Google Scholar
Leprieur, F., Albouy, C., De Bortoli, J., et al. (2012). Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE, 7, e42760.CrossRefGoogle ScholarPubMed
Linnaeus, C. (1758). Systema naturae per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10th edn. Stockholm: Holmiae (Salvius).Google Scholar
Lomolino, M. V., Riddle, B. R., Whittaker, R. J. and Brown, J. H. (2010). Biogeography. 4th edn. Sunderland: Sinauer Associates.Google Scholar
Lourandos, H. (1983). Intensification: a late Pleistocene–Holocene archaeological sequence from southwestern Victoria. Archaeology in Oceania, 18, pp. 81–94.Google Scholar
Low, T. (1999). Feral Future: the Untold Story of Australia’s Exotic Invaders. Melbourne: Penguin.Google Scholar
Mares, M. A. (1993). Desert rodents, seed consumption, and convergence. BioScience, 43, pp. 372–379.CrossRefGoogle Scholar
Margules, C. and Pressey, R. (2000). Systematic conservation planning. Nature, 405, pp. 243–253.CrossRefGoogle ScholarPubMed
Martin, H. A. (1990). Tertiary climate and phytogeography in southeastern Australia. Review of Palaeobotany and Palynology, 65, pp. 47–55.CrossRefGoogle Scholar
Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66, pp. 533–563.CrossRefGoogle Scholar
McKenzie, N. L., Burbidge, A. A., Baynes, A., et al. (2007). Analysis of factors implicated in the recent decline of Australia’s mammal fauna. Journal of Biogeography, 34, pp. 597–611.CrossRefGoogle Scholar
McNamara, J. A. (1997). Some smaller Macropod fossils of South Australia. Proceedings of the Linnaean Society of New South Wales, 117, pp. 97–105.Google Scholar
Meredith, R. W., Janecka, J. E., Gatesy, J., et al. (2011). Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science, 334, pp. 521–524.CrossRefGoogle ScholarPubMed
Meredith, R. W., Westerman, M., Case, J. A. and Springer, M. S. (2008). A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. Journal of Mammalian Evolution, 15, pp. 1–36.CrossRefGoogle Scholar
Mesibov, R. (2001). The Milabeena Marvel, or why single-species conservation is inappropriate for cryptic invertebrates. The Tasmanian Naturalist, 123, pp. 16–23.Google Scholar
Michaux, B. (2010). Biogeology of Wallacea: geotectonic models, areas of endemism, and natural biogeographical units. Biological Journal Of The Linnean Society, 101, pp. 193–212.CrossRefGoogle Scholar
Minelli, A. (2003). The status of taxonomic literature. Trends in Ecology and Evolution, 18, pp. 75–76.CrossRefGoogle Scholar
Mooney, S. D., Harrison, S. P., Bartlein, P. J. and Stevenson, J. (2012). The prehistory of fire in Australasia. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World. Collingwood: CSIRO Publishing, pp. 3–25.Google Scholar
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. and Worm, B. (2011). How many species are there on Earth and in the ocean?PLoS Biology, 9, e1001127.CrossRefGoogle ScholarPubMed
Morton, S. R. and James, C. D. (1988). The diversity and abundance of lizards in arid Australia: a new hypothesis. The American Naturalist, 132, pp. 237–256.CrossRefGoogle Scholar
Morton, S. R., Stafford Smith, D. M., Dickman, C. R., et al. (2011). A fresh framework for the ecology of arid Australia. Journal of Arid Environments, 75, pp. 313–329.CrossRefGoogle Scholar
Neumann, F. G. (1979). Insect pest management in Australian Radiata Pine plantations. Australian Forestry, 42, pp. 30–38.CrossRefGoogle Scholar
Nichols, N. (1991). The El Nino/Southern Oscillation and Australian vegetation. Vegetatio, 91, pp. 23–36.CrossRefGoogle Scholar
Nipperess, D. A., Faith, D. P. and Barton, K. (2010). Resemblance in phylogenetic diversity among ecological assemblages. Journal of Vegetation Science, 21, pp. 809–820.CrossRefGoogle Scholar
O’Grady, J., Reed, D., Brook, B. W. and Frankham, R. (2004). What are the best correlates of predicted extinction risk?Biological Conservation, 118, pp. 513–520.CrossRefGoogle Scholar
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. BioScience, 51, pp. 933–938.CrossRefGoogle Scholar
Orians, G. H. and Milewski, A. V. (2007). Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biological Reviews, 82, pp. 393–423.CrossRefGoogle ScholarPubMed
Owen-Smith, N. (1987). Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology, 13, pp. 351–362.CrossRefGoogle Scholar
Prideaux, G. J., Gully, G. A., Couzens, A. M. C., et al. (2010). Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proceedings of the National Academy of Sciences, 107, pp. 22 157–22 162.CrossRefGoogle ScholarPubMed
Purvis, A. and Hector, A. (2000). Getting the measure of biodiversity. Nature, 405, pp. 212–219.CrossRefGoogle ScholarPubMed
Rabosky, D. L., Donnellan, S. C., Talaba, A. L. and Lovette, I. J. (2007). Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proceedings Of The Royal Society Of London Series B – Biological Sciences, 274, pp. 2915–2923.CrossRefGoogle ScholarPubMed
Raven, P. H. and Yeates, D. K. (2007). Australian biodiversity: threats for the present, opportunities for the future. Australian Journal Of Entomology, 46, pp. 177–187.CrossRefGoogle Scholar
Rich, P. V., Rich, T. H., Wagstaff, B. E., et al. (1988). Evidence for low temperatures and biologic diversity in Cretaceous high latitudes of Australia. Science, 242, pp. 1403–1406.CrossRefGoogle Scholar
Roberts, R. G., Flannery, T. F., Ayliffe, L. K., et al. (2001). New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science, 292, pp. 1888–1892.CrossRefGoogle ScholarPubMed
Root, T. L. and Schneider, S. H. (2006). Conservation and climate change: the challenges ahead. Conservation Biology, 20, pp. 706–708.CrossRefGoogle ScholarPubMed
Rule, S., Brook, B. W., Haberle, S. G., et al. (2012). The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science, 335, pp. 1483–1486.CrossRefGoogle ScholarPubMed
Sanders, K. L., Lee, M. S. Y., Leys, R., Foster, R. and Keogh, J. S. (2008). Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations. Journal of Evolutionary Biology, 21, pp. 682–695.CrossRefGoogle ScholarPubMed
Schwarz, M., Fuller, S., Tierney, S. and Cooper, S. J. (2006). Molecular phylogenetics of the Exoneurine Allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia. Systematic Biology, 55, pp. 31–45.CrossRefGoogle ScholarPubMed
Sclater, P. L. (1858). On the general geographical distribution of the members of the class Aves. Journal of the Linnean Society, Zoology, 2, pp. 130–145.CrossRefGoogle Scholar
Shoo, L. P., Storlie, C., VanDerWal, J., Little, J. and Williams, S. E. (2010). Targeted protection and restoration to conserve tropical biodiversity in a warming world. Global Change Biology, 17, pp. 186–193.CrossRefGoogle Scholar
Short, J. (1998). The extinction of rat-kangaroos (Marsupialia: Potoroidae) in New South Wales, Australia. Biological Conservation, 86, pp. 365–377.CrossRefGoogle Scholar
Short, J., Kinnear, J. E. and Robley, A. (2002). Surplus killing by introduced predators in Australia – evidence for ineffective anti-predator adaptations in native prey species?Biological Conservation, 103, pp. 283–301.CrossRefGoogle Scholar
Spalding, M. D., Fox, H. E., Allen, G. R., et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57, pp. 573–583.CrossRefGoogle Scholar
Turney, C. S. M., Kershaw, A. P., Clemens, S. C., et al. (2004). Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature, 428, pp. 306–310.CrossRefGoogle ScholarPubMed
Udvardy, M. D. F. (1975). A classification of the biogeographical provinces of the world. IUCN Occasional Paper, 18, pp. 1–50.Google Scholar
Upchurch, P. (2008). Gondwanan break-up: legacies of a lost world?Trends in Ecology and Evolution, 23, pp. 229–236.CrossRefGoogle ScholarPubMed
Van Dyck, S. and Strahan, R. (2008). The Mammals of Australia. 3rd edn. Chatswood: New Holland Publishers.Google Scholar
Vane-Wright, R. (2003). Indifferent Philosophy versus Almighty Authority: on consistency, consensus and unitary taxonomy. Systematics and Biodiversity, 1, pp. 3–11.CrossRefGoogle Scholar
Vidal, N., Marin, J., Sassi, J., et al. (2012). Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biology Letters, 8, pp. 853–855.CrossRefGoogle ScholarPubMed
Wallace, A. R. (1860). On the zoological geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society, 4, pp. 172–184.CrossRefGoogle Scholar
Wallace, A. R. (1876). The Geographic Distribution of Animals. London: Macmillan.Google Scholar
Webster, K. N. and Dawson, T. J. (2004). Is the energetics of mammalian hopping locomotion advantageous in arid environments?Australian Mammalogy, 26, pp. 153–160.Google Scholar
Westoby, M. (1993). Biodiversity in Australia compared with other continents. In Species Diversity in Ecological Communities: Historical and Geographical Perspectives. Chicago: University of Chicago Press, pp. 170–177.Google Scholar
White, M. E. (2006). Environments of the geological past. In Evolution and Biogeography of Australasian Vertebrates. Oatlands: Auscipub, pp. 17–50.Google Scholar
Whittaker, R., Araujo, M., Jepson, P., et al. (2005). Conservation biogeography: assessment and prospect. Diversity and Distributions, 11, pp. 3–23.CrossRefGoogle Scholar
Williams, S. E., Bolitho, E. E. and Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings Of The Royal Society Of London Series B – Biological Sciences, 270, pp. 1887–1892.CrossRefGoogle ScholarPubMed
Wroe, S., Field, J. H., Archer, M., et al. (2013). Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia–New Guinea). Proceedings Of The National Academy of Sciences, 110, pp. 8777–8781.CrossRefGoogle Scholar
Wroe, S., Myers, T. J., Wells, R. T. and Gillespie, A. (1999). Estimating the weight of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae: Marsupialia): implications for the ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology, 47, pp. 489–498.CrossRefGoogle Scholar
Zachos, J. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, pp. 686–693.CrossRefGoogle ScholarPubMed
Zachos, J. C., Dickens, G. R. and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, pp. 279–283.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×