Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T02:09:20.017Z Has data issue: false hasContentIssue false

Chapter 49 - The role of diffusion- and perfusion-weighted brain imaging in neonatology

from Section 8 - Pediatrics

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

MR imaging (MRI) of the neonatal brain is a relatively new field but there are now many publications that illustrate its role in defining malformations, establishing patterns of perinatal injury, and predicting outcome.[1–7]

Detailed information about the pattern of lesions following perinatal brain injury can be obtained with MRI,[1,2,6,8] and it is an excellent predictor of outcome in infants with hypoxic–ischemic encephalopathy (HIE).[4,7,9–11] Conventional MRI has also been used to study perinatal stroke; later hemiplegia develops if there is involvement of three sites; hemispheric white matter (WM), basal ganglia and thalami (BGT), and posterior limb of the internal capsule (PLIC).[8] In preterm infants with unilateral focal lesions, the development of a hemiplegia is related to the MR signal intensity within the ipsilateral PLIC at term equivalent age.[12] Diffusion-weighted imaging (DWI) may also help in predicting outcome by detecting abnormal signal intensities in the corticospinal tracts that precede the development of Wallerian degeneration.[12] While perfusion-weighted imaging (PWI) may have many applications in studies of the immature brain, there are very few published studies using PWI in neonates either with contrast-enhanced [13–16] or arterial spin labeling (ASL) techniques.[17]

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 750 - 765
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkovich, AJ.MR and CT evaluation of profound neonatal and infantile asphyxiaAJNR Am J Neuroradiol 1992; 13: 959–972.Google ScholarPubMed
Kuenzle, C, Baenziger, O, Martin, E, et al. Prognostic value of early MR imaging in term infants with severe perinatal asphyxia. Neuropediatrics 1994; 25: 191–200.CrossRefGoogle Scholar
Mercuri, E, Cowan, F, Rutherford, M, et al. Ischaemic and haemorrhagic brain lesions in newborns with seizures and normal Apgar scores. Arch Dis Child Fetal Neonatal Ed 1995; 73: 67–74.CrossRefGoogle ScholarPubMed
Mercuri, E, Ricci, D, Cowan, F, et al. Head growth in infants with hypoxic–ischaemic encephalopathy: correlation with neonatal magnetic resonance imaging. Pediatrics 2000; 106: 235–243.CrossRefGoogle ScholarPubMed
Mercuri, E, Rutherford, M, Barnett, A, et al. MRI lesions and infants with neonatal encephalopathy. Is the Apgar score predictive?Neuropediatrics 2002; 33: 150–156.CrossRefGoogle ScholarPubMed
Rutherford, MA, Pennock, JM, Schwieso, JE, Cowan, FM, Dubowitz, LMS.Hypoxic–ischaemic encephalopathy: early and late MRI findings and clinical outcome. Arch Dis Child 1996; 75: 145–151.CrossRefGoogle Scholar
Rutherford, MA, Pennock, JM, Counsell, SJ, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic–ischemic encephalopathy. Pediatrics 1998; 102: 323–328.CrossRefGoogle ScholarPubMed
Rutherford, MA (ed.) MRI of the Neonatal Brain. New York: Saunders, 2002.
Mercuri, E, Rutherford, M, Cowan, F, et al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: A clinical EEG and MRI study. Paediatrics 1999; 103: 39–46.CrossRefGoogle Scholar
Liauw, L, van der Grond, J, van den Berg-Huysmans, AA, et al. Hypoxic–ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology 2008; 247(1): 204–212.CrossRefGoogle ScholarPubMed
Boichot, C, Walker, PM, Durand, C, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology 2006; 239(3): 839–848.CrossRefGoogle ScholarPubMed
De Vries, LS, Groenendaal, F, van Haastert, IC, et al. Asymmetrical myelination of the posterior limb of the internal capsule in infants with periventricular haemorrhagic infarction: an early predictor of hemiplegia. Neuropediatrics 1999; 30: 314–319.CrossRefGoogle ScholarPubMed
Tanner, SF, Ramenghi, LA, Ridgway, JP, et al. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. Am J Roentgenol 2000; 174: 1643–1649.CrossRefGoogle ScholarPubMed
Rutherford, M, Srinivasan, L, Dyet, L, et al. Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 2006; 36(7): 582–592.CrossRefGoogle ScholarPubMed
Wintermark, P, Moessinger, AC, Gudinchet, F, Meuli, R.Temporal evolution of MR perfusion in neonatal hypoxic-ischemic encephalopathy. J Magn Reson Imaging 2008; 27: 1229–1234.CrossRefGoogle ScholarPubMed
Wintermark, P, Moessinger, AC, Gudinchet, F, Meuli, R.Perfusion–weighted magnetic resonance imaging patterns of hypoxic–ischemic encephalopathy in term neonates. J Magn Reson Imaging 2008; 28: 1019–1025.CrossRefGoogle ScholarPubMed
Miranda, MJ, Olofsson, K, Sidaros, K.Noninvasive measurements of regional cerebral perfusion in preterm and termneonates by magnetic resonance arterial spin labelling. Pediatr Res 2006; 60: 359–363.CrossRefGoogle Scholar
Bartha, AI, Yap, KR, Miller, SP, et al. The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR Am J Neuroradiol 2007; 28: 1015–1021.CrossRefGoogle ScholarPubMed
Forbes, KP, Pipe, JG, Bird, CR.Changes in brain water diffusion during the 1st year of life. Radiology 2002; 222: 405–409.CrossRefGoogle ScholarPubMed
Miller, JH, McKinstry, RC, Philip, JV, Mukherjee, P, Neil, JJ.Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. Am J Roentgenol 2003; 180: 851–859.CrossRefGoogle ScholarPubMed
Winter, JD, Lee, DS, Hung, RM, et al. Apparent diffusion coefficient pseudonormalization time in neonatal hypoxic-ischemic encephalopathy. Pediatr Neurol 2007; 37: 255–262.CrossRefGoogle ScholarPubMed
Hüppi, PS, Maier, SE, Peled, S, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998; 44: 584–590.CrossRefGoogle ScholarPubMed
Mukherjee, P, Miller, JH, Shimony, JS, et al. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 2002; 23: 1445–1456.Google ScholarPubMed
Barnerias, C, Boddaert, N, Pascale, G, et al. Unusual magnetic resonance imaging features in Menkes disease. Brain Dev 2008; 30: 489–492.CrossRefGoogle ScholarPubMed
DeLano, MC, Cao, Y.High b-value diffusion imaging. Neuroimag Clin N Am 2002; 12: 21–34.CrossRefGoogle ScholarPubMed
Provenzale, JM, Liang, L, DeLong, D, White, LE.Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. Am J Roentgenol 2007; 189: 476–486.CrossRefGoogle Scholar
Krishnamoorthy, KS, Soman, TB, Takeoka, M, Schaefer, PW.Diffusion-weighted imaging in neonatal cerebral infarction: clinical utility and follow-up. J Child Neurol 2000; 15: 592–602.CrossRefGoogle ScholarPubMed
Cowan, FM, Pennock, JM, Hanrahan, JD, Manji, KP, Edwards, AD.Early detection of cerebral infarction and hypoxic–ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics 1994; 25: 172–175.CrossRefGoogle ScholarPubMed
Fiesbach, JB, Jansen, O, Schellinger, PD, et al. Serial analysis of the apparent diffusion coefficient time course in human stroke. Neuroradiology 2002; 44: 294–298.CrossRefGoogle Scholar
Mader, I, Schoning, M, Klose, U, Kuker, W.Neonatal cerebral infarction diagnosed by diffusion-weighted MRI: pseudonormalization occurs early. Stroke 2002; 33: 1142–1145.CrossRefGoogle ScholarPubMed
Rutherford, MA, Pennock, JM, Cowan, FM, et al. Does the brain regenerate after perinatal infarction?Eur J Paediatr Neurol 1997; 1: 13–17.CrossRefGoogle ScholarPubMed
Rutherford, MA, Pennock, JM, Cowan, FM, et al. Detection of subtle changes in the brains of infants and children via subvoxel registration and subtraction of serial MR images. AJNR Am J Neuroradiol 1997; 18: 829–835.Google ScholarPubMed
Kirton, A, Shroff, M, Visvanathan, T, de Veber, G.Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcomeStroke 2007; 38: 974–980.CrossRefGoogle ScholarPubMed
De Vries, LS, van der Grond, J, van Haastert, IC, Groenendaal, F.Prediction of outcome in new-born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging. Neuropediatrics 2005; 36: 12–20.CrossRefGoogle ScholarPubMed
Seghier, ML, Lazeyras, F, Zimine, S, et al. Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke. Neuroimage 2004; 21: 463–472.CrossRefGoogle Scholar
Seghier, ML, Lazeyras, F, Zimine, S, et al. Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report. BMC Neurol 2005; 26: 5–17.Google Scholar
Cowan, F, Dubowitz, L, Mercuri, E, Counsell, S, Rutherford, M.White matter injury can lead to cognitive without major motor deficits in following perinatal asphyxia and early encephalopathy. Dev Med Child Neurol Suppl 2003; 93: 14.Google Scholar
Forbes, KP, Pipe, JG, Bird, R.Neonatal hypoxic–ischemic encephalopathy: detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 2000; 21: 1490–1496.Google ScholarPubMed
Barkovich, AJ, Westmark, KD, Bedi, HS, et al. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol 2001; 22: 1786–1794.Google ScholarPubMed
Zarifi, MK, Astrakas, LG, Poussaint, TY, et al. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 2002; 225: 859–870.CrossRefGoogle ScholarPubMed
Wolf, RL, Zimmerman, RA, Clancy, R, Haselgrove, JH.Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic–ischemic brain injury: initial experience. Radiology 2001; 218: 825–833.CrossRefGoogle ScholarPubMed
Takeoka, M, Soman, TB, Yoshii, A, et al. Diffusion-weighted images in neonatal cerebral hypoxic–ischemic injury. Pediatr Neurol 2002; 26: 274–281.CrossRefGoogle ScholarPubMed
McKinstry, RC, Miller, JH, Snyder, AZ, et al. A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 2002; 59: 824–833.CrossRefGoogle ScholarPubMed
Vermeulen, RJ, van Schie, PE, Hendrikx, L, et al. Diffusion-weighted and conventional MR imaging in neonatal hypoxic ischemia: two-year follow-up study. Radiology 2008; 249: 631–639.CrossRefGoogle ScholarPubMed
Vermeulen, RJ, Fetter, WP, Hendrikx, L, et al. Diffusion-weighted MRI in severe neonatal hypoxic–ischaemia: the white cerebrum. Neuropediatrics 2003; 34: 72–76.Google ScholarPubMed
L’Abee C, de Vries LS, van der Grond, J, Groenendaal, F.Early diffusion-weighted MRI and 1H-magnetic resonance spectroscopy in asphyxiated full-term neonates. Biol Neonate 2005; 88: 306–312.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Miller, SP, Bartha, A, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 2006; 27: 533–547.Google ScholarPubMed
Ward, P, Counsell, S, Allsop, J, et al. Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy. Pediatrics 2006; 117: e619–e630.CrossRefGoogle ScholarPubMed
Roelants-van, Rijn AM, Nikkels, PG, Groenendaal, F, et al. Neonatal diffusion-weighted MR imaging: relation with histopathology or follow-up MR examination. Neuropediatrics 2001; 32: 286–294.CrossRefGoogle Scholar
Miller, SP, Vigneron, DB, Henry, RG, et al. Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 2002; 16: 621–632.CrossRefGoogle ScholarPubMed
Inder, T, Hüppi, PS, Zientara, GP, et al. Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 2000; 136: 421.Google Scholar
Nagae, LM, Hoon, AH, Stashinko, E, et al. Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR Am J Neuroradiol 2007; 28: 1213–1222.CrossRefGoogle ScholarPubMed
Counsell, SJ, Allsop, JM, Harrison, MC, et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003; 112: 1–7.CrossRefGoogle ScholarPubMed
Rose, J, Mirmiran, M, Butler, EE, et al. Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol 2007; 49: 745–750.CrossRefGoogle ScholarPubMed
Drobyshevsky, A, Bregman, J, Storey, P, et al. Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev Neurosci 2007; 29: 289–301.CrossRefGoogle ScholarPubMed
Maalouf, EF, Duggan, PJ, Rutherford, MA, et al. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999; 135: 351–357.CrossRefGoogle Scholar
Righini, A, Bianchini, E, Parazzini, C, et al. Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 2003; 24: 799–804.Google ScholarPubMed
Krishnan, ML, Dyet, LE, Boardman, JP, et al. Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years. Pediatrics 2007; 120: e604–e609.CrossRefGoogle ScholarPubMed
Dudink, J, Lequin, M, van Pul, C, et al. Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatr Radiol 2007; 37: 1216–1223.CrossRefGoogle ScholarPubMed
Hüppi, PS, Murphy, B, Maier, SE, et al. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 2001; 107: 455–460.CrossRefGoogle ScholarPubMed
Bammer, R, Acar, B, Moseley, ME.In vivo MR tractography using diffusion imaging. Eur J Radiol 2003; 45: 223–234.CrossRefGoogle ScholarPubMed
Zhai, G, Lin, W, Wilber, KP, Gerig, G, Gilmore, JH.Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 2003; 229: 673–681.CrossRefGoogle ScholarPubMed
Smith, SM, Jenkinson, M, Johansen-Berg, H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487–1505.CrossRefGoogle ScholarPubMed
Anjari, M, Srinivasan, L, Allsop, JM, et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 2007; 35: 1021–1027.CrossRefGoogle ScholarPubMed
Hoon, AH, Lawrie, WT, Melhem, ER, et al. Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 2002; 59: 752–756.CrossRefGoogle ScholarPubMed
Thomas, B, Eyssen, M, Peeters, R, et al. Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white injury. Brain 2005; 128: 2562–2577.CrossRefGoogle ScholarPubMed
Fan, GG, Yu, B, Quan, SM, Sun, BH, Guo, QY. Potential of diffusion tensor MRI in the assessment of periventricular leukomalacia. Clin Radiol 2006; 61: 358–364.CrossRefGoogle ScholarPubMed
Staudt, M, Braun, C, Gerloff, C, et al. Developing somatosensory projections bypass periventricular brain lesions. Neurology 2006; 67: 522–525.CrossRefGoogle ScholarPubMed
Counsell, SJ, Dyet, LE, Larkman, DJ, et al. Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 2007; 34: 896–904.CrossRefGoogle ScholarPubMed
Bassi, L, Ricci, D, Volzone, A, et al. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 2008; 131: 573–582.CrossRefGoogle ScholarPubMed
Berman, JI, Glass, HC, Miller, SP, et al. Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. AJNR Am J Neuroradiol 2009; 30: 120–124.CrossRefGoogle ScholarPubMed
Dubois, J, Dehaene-Lambertz, G, Soarès, C, et al. Microstructural correlates of infant functional development: example of the visual pathways. J Neurosci 2008; 28: 1943–1948.CrossRefGoogle ScholarPubMed
Poretti, A, Boltshauser, E, Loenneker, T, et al. Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol 2007; 28: 1929–1933.CrossRefGoogle ScholarPubMed
Kumar, R, Macey, PM, Woo, MA, Alger, JR, Harper, RM.Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res 2008; 64: 275–280.CrossRefGoogle ScholarPubMed
Cavalleri, F, Berardi, A, Burlina, AB, Ferrari, F, Mavilla, L.Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 2002; 44: 499–502.CrossRefGoogle ScholarPubMed
Khong, PL, Lam, BC, Chung, BH, Wong, KY, Ooi, GC.Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol 2003; 24: 1181–1183.Google ScholarPubMed
Shan, DK, Tingay, DG, Fink, AM, Hunt, RW, Dargaville, PA.Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol 2005; 33: 50–52.Google Scholar
Yung, A, Poon, G, Qiu, DQ, et al. White matter volume and anisotropy in preterm children: a pilot study of neurocognitive correlates. Pediatr Res 2007; 61: 732–736.CrossRefGoogle ScholarPubMed
Baldoli, C, Righini, A, Parazzini, C, Scotti, G, Triulzi, F.Demonstration of acute ischemic lesions in the fetal brain by diffusion magnetic resonance imaging. Ann Neurol 2002; 52: 243–246.CrossRefGoogle ScholarPubMed
Righini, A, Salmona, S, Bianchini, E, et al. Prenatal magnetic resonance imaging evaluation of ischemic brain lesions in the survivors of monochorionic twin pregnancies: report of 3 cases. J Comput Assist Tomogr 2004; 28: 87–92.CrossRefGoogle ScholarPubMed
McKinstry, RC, Mathur, A, Miller, JH, et al. Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 2002; 12: 1237–1243.CrossRefGoogle ScholarPubMed
Jiang, S, Xue, H, Counsell, S, et al. In-utero three dimension high resolution fetal brain diffusion tensor imaging. Comput Comput Assist Interv 2007; 10(Pt 1): 18–26.Google ScholarPubMed
Kasprian, G, Brugger, PC, Weber, M, et al. In utero tractography of fetal white matter development. Neuroimage 2008; 43: 213–224.CrossRefGoogle ScholarPubMed
Burdette, JH, Elster, AD.Diffusion-weighted imaging of cerebral infarctions: are higher B values better?J Comput Assist Tomogr 2002; 26: 622–627.CrossRefGoogle ScholarPubMed
Dudink, J, Larkman, DJ, Kapellou, O, et al. High b-value diffusion tensor imaging of the neonatal brain at 3 T. AJNR Am J Neuroradiol 2008; 29: 1966–1972. [Epub ahead of print]
Jaermann, T, Crelier, G, Pruessmann, KP, et al. SENSE-DTI at 3 T. Magn Reson Med 2004; 51: 230–236.CrossRefGoogle ScholarPubMed
Tanner, SF, Cornette, L, Ramenghi, LA, et al. Cerebral perfusion in infants and neonates: preliminary results obtained using dynamic susceptibility contrast enhanced magnetic resonance imaging. Arch Dis Child Fetal Neonat 2003; 88: 525–530.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×