Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:50:26.025Z Has data issue: false hasContentIssue false

10 - Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia

Published online by Cambridge University Press:  05 July 2014

Michael Morlo
Affiliation:
Forschungsinstitut Senckenberg, Frankfurt am Main
Gregg F. Gunnell
Affiliation:
University of Michigan
Doris Nagel
Affiliation:
Universität Wien
Anjali Goswami
Affiliation:
University College London
Anthony Friscia
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Quantitative analyses of guild structures of living and fossil mammals have a relatively long history (e.g. Valverde, 1964; Van Valkenburgh, 1988; Legendre, 1989; Gunnell et al., 1995), although carnivores have often been excluded from older studies. However, some studies have been published dealing with general carnivore ecomorphology (e.g. Van Valkenburgh, 1992, 1999; Werdelin, 1996; Van Valkenburgh et al., 2004; Wesley-Hunt, 2005), or structures of single guilds (e.g. Dayan et al., 1989; Viranta and Andrews, 1995; Dayan and Simberloff, 1996; Jones, 2003; Hertler and Volmer, 2008). Few of these studies, however, have combined more than two parameters (e.g. body mass and diet or body mass and locomotion). In addition to body mass, diet and locomotor patterns can satisfactorily be estimated for fossil taxa (see Morlo, 1999, for an example using these three parameters in an analysis of creodont guilds). A similar methodological approach has been applied to compare several carnivore guilds (Morlo, 1999; Nagel and Morlo, 2000, 2003; Morlo and Gunnell, 2003, 2005a,b, 2006; Nagel et al., 2005; Stefen et al., 2005; Morlo and Nagel, 2007). In this chapter, we augment these studies with the addition of a set of guild analyses from the Paleocene to the Recent. Having guild structure established on the three parameters, two guilds can be tested against each other by principal component analysis (PCA) to clarify which parameters are mainly responsible for the differences.

Type
Chapter
Information
Carnivoran Evolution
New Views on Phylogeny, Form and Function
, pp. 269 - 310
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, K. (2004). Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zoological Journal of the Linnean Society, 142, 91–104.CrossRefGoogle Scholar
Anyonge, W. (1993). Body mass in large extant and extinct carnivores. Journal of the Linnean Society, 11, 177–205.Google Scholar
Barnet, C. H. and Napier, J. R. (1953). The rotary mobility of the fibula in eutherian mammals. Journal of Anatomy, 87, 11–21.Google Scholar
Bertram, J. E. and Biewener, A. A. (1990). Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology, 204, 157–69.CrossRefGoogle Scholar
Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S. and Corfield, R. M. (2001). Refined isotope stratigraphy across the continental Paleocene–Eocene boundary on Polecat Bench in the northern Bighorn Basin. In Paleocene–Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming, ed. P. D. Gingerich. University of Michigan, Papers on Paleontology, 33, 73–88.
Boyer, D. M. and Georgi, J. A. (2007). Cranial morphology of a pantolestid eutherian mammal from the Eocene Bridger Formation, Wyoming, USA: implications for relationship and habitat. Journal of Mammalian Evolution, 14, 239–80.CrossRefGoogle Scholar
Carrano, M. T. (1996). What, if anything, is a cursor? Categories versus continua for describing locomotor performance in terrestrial amniotes. Journal of Vertebrate Paleontology, 16 (Suppl. 3), 26A.Google Scholar
Christiansen, P. (1999). Scaling of the limb long bones to body mass in terrestrial mammals. Journal of Morphology, 239, 167–90.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Clyde, W. C. and Gingerich, P. D. (1998). Mammalian community response to the latest Paleocene therman maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology, 26, 1011–14.2.3.CO;2>CrossRefGoogle Scholar
Cooper, A. B., Pettorelli, N. and Durant, S. M. (2007). Large carnivore menus: factors affecting hunting decision by cheetahs in the Serengeti. Animal Behaviour, 73, 651–59.CrossRefGoogle Scholar
Day, L. M. and Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae). The Journal of Experimental Biology, 210, 642–54.CrossRefGoogle Scholar
Dayan, T. and Simberloff, D. (1996). Patterns of size separation in carnivore communities. In Carnivore Behavior, Ecology, and Evolution, Vol. 2, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 243–66.Google Scholar
Dayan, T., Tchernov, E., Yom-Tov, Y. and Simberloff, D. (1989). Ecological character displacement in Saharo-Arabian Vulpes: outfoxing Bergmann's rule. Oikos, 55, 263–72.CrossRefGoogle Scholar
Egi, N. (2001). Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology, 44, 497–528.CrossRefGoogle Scholar
Eisenberg, J. F. (1981). The Mammalian Radiations – An Analysis of Trends in Evolution, Adaptation, and Behavior. Chicago, IL: University of Chicago Press.Google Scholar
Fejfar, O. and Schmidt-Kittler, N. (1984). Sivanasua und Euboictis n. gen. – zwei pflanzenfressende Schleichkatzenvorläufer (Viverridae, Carnivora, Mammalia) im Europäischen Untermiozän. Mainzer geowissenschaftliche Mitteilungen, 13, 49–72.Google Scholar
Flynn, J. J., Neff, N. A. and Tedford, R. H. (1988). Phylogeny of the Carnivora. In Phylogeny and Classification of Tetrapods, vol. 2, ed. Benton, M.. Oxford: Oxford University Press, pp. 73–115.Google Scholar
Friscia, A. R., Van Valkenburg, B. and Biknevicius, A. R. (2007). An ecomorphological analysis of extant small carnivorans. Journal of Zoology, 272, 82–100.CrossRefGoogle Scholar
Gebo, D. L. and Rose, K. D. (1993). Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology, 13, 125–44.CrossRefGoogle Scholar
Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, University of Michigan, 28, 79–92.Google Scholar
Gingerich, P. D. (2001). Biostratigraphy of the contienental Paleocene–Eocene boundary interval on Polecat Bench in the northern Bighorn Basin. In Paleocene–Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming, ed. P. D. Gingerich. University of Michigan Papers on Paleontology, 33, 37–71.
Gingerich, P. D. (2003). Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology, 29, 429–54.2.0.CO;2>CrossRefGoogle Scholar
Ginsburg, L. (1961a). Plantigradie et digitigradie chez les carnivores fissipèdes. Mammalia, 25, 1–21.CrossRefGoogle Scholar
Ginsburg, L. (1961b). La faune des carnivores miocènes de Sansan (Gers). Mémoires du Muséum National d'Histoire naturelle, n.s. C, 9, 1–190.Google Scholar
Ginsburg, L. and Morales, J. (1999). Le genre Sivanasua (Lophocyoninae, Hyaenodontidae, Creodonta, Mammalia). Estudios Geológicos, 55, 173–80.CrossRefGoogle Scholar
Gunnell, G. F., Morgan, M. E., Maas, M. C. and Gingerich, P. D. (1995). Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 265–86.CrossRefGoogle Scholar
Heinrich, R. E. and Biknevicius, A. R. (1998). Skeletal allometry and interlimb scaling patterns in mustelid carnivorans. Journal of Morphology, 235, 121–34.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Heinrich, R. E. and Rose, K. D. (1997). Postcranial morphology and locomotor behaviour of two Early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40, 279–305.Google Scholar
Heinrich, R. E., Strait, S. G. and Houde, P. (2008). Earliest Eocene Miacidae (Mammalia, Carnivora) from northwestern Wyoming. Journal of Paleontology, 82, 154–62.CrossRefGoogle Scholar
Heizmann, E. P. J. (1973). Die tertiären Wirbeltiere des Steinheimer Beckens. B. Ursidae, Felidae, Viverridae sowie Ergänzungen und Nachträge zu den Mustelidae. Palaeontographica, 8, 1–95.Google Scholar
Heizmann, E. P. J. and Morlo, M. (1998). Die semiaquatische Lartetictis dubia (Mustelinae, Carnivora, Mammalia) vom Goldberg/Ries (Baden-Württemberg). In Festschrift zum 70. Geburtstag von Prof. Dr. Karlheinz Rothausen, ed. K. I. Grimm, M. C. Grimm and M. Morlo. Mainzer naturwissenschaftliches Archiv, 21, 141–53.
Hertler, C. and Volmer, R. (2008). Assessing prey competition in fossil carnivore communities – a scenario for prey competition and its evolutionary consequences for tigers in Pleistocene Java. Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 67–80.CrossRefGoogle Scholar
Holliday, J. A. and Steppan, S. J. (2004). Evolution of hypercarnivory: the effect of specialization on morphology and taxonomic diversity. Paleobiology, 30, 108–28.2.0.CO;2>CrossRefGoogle Scholar
Hunter, J. S., Durant, S. M. and Caro, T. M. (2007). To flee or not to flee: predator avoidance by cheetahs at kills. Behavior, Ecology, and Sociobiology, 61, 1033–42.CrossRefGoogle Scholar
Jenkins, F. A., and Camazine, S. M. (1977). Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology, 181, 351–70.CrossRefGoogle Scholar
Jones, M. (2003). Convergence in ecomorphology and guild structure among marsupial and placental carnivores. In Predators with Pouches, ed. Jones, M., Dickman, C. and Archer, M.. Collingwood, Australia: CSIRO Publishing, pp. 285–96.Google Scholar
Koch, P. L., Zachos, J. C. and Gingerich, P. D. (1992). Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene–Eocene boundary. Nature, 358, 319–22.CrossRefGoogle Scholar
Koenigswald, W. von. (1980). Das Skelett eines Pantolestiden (Proteutheria, Mamm.) aus dem mittleren Eozän von Messel bei Darmstadt. Paläontologische Zeitschrift, 54, 267–87.CrossRefGoogle Scholar
Laborde, C. (1987). Caractères d'aptation des membres au mode de vie arboricole chez Cryptoprocta ferox par comparaison d'autres Carnivores Viverridés. Annales des Sciences Naturelles, Zoologie, Série 13(8), 25–39.Google Scholar
Legendré, S. (1989). Les communautés de mammières du Paléogéne (Eocéne supérieur et Oligocéne) d'Europe occidentale: structures, milieux et Évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie, 16, 1–110.Google Scholar
Legendré, S. and Roth, C. (1988). Correlation of carnassial tooth size and body weight in Recent carnivores (Mammalia). Historical Biology, 1, 85–98.CrossRefGoogle Scholar
Lewis, M. and Morlo, M. (2010). Creodonta. In Cenozoic Mammals of Africa, ed. Werdelin, L. and Sanders, W. J.. Berkeley, CA: University of California Press.Google Scholar
MacLeod, N. and Rose, K. D. (1993). Inferring locomotor behavior in Paleogene mammals via Eigenshape analysis. American Journal of Sciences, 293A, 300–55.Google Scholar
Morlo, M. (1999). Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Géobios, 32, 297–305.CrossRefGoogle Scholar
Morlo, M. and Gunnell, G. F. (2003). Small Limnocyoninae (Hyaenodontidae, Mammalia) from the Bridgerian, middle Eocene of Wyoming: Thinocyon, Iridodon n. gen., and Prolimnocyon. Contributions from the Museum of Paleontology, The University of Michigan, 31, 43–78.Google Scholar
Morlo, M. and Gunnell, G. F. (2005a). New species of Limnocyon (Mammalia, Creodonta) from the Bridgerian (middle Eocene). Journal of Vertebrate Paleontology, 25, 247–51.CrossRefGoogle Scholar
Morlo, M. and Gunnell, G. F. (2005b). Comparison of carnivore guild structure across the Paleocene–Eocene boundary in North America. Journal of Vertebrate Paleontology, 25 (Suppl. 3), 93A.Google Scholar
Morlo, M. and Gunnell, G. F. (2006). Carnivore guild structure and abundance across the Paleocene–Eocene boundary in North America. Climate and Biota of the Early Paleogene Conference, Bilbao 12th to 18th June 2006, Abstracts, 87. Bilbao: University of the Basque Country.Google Scholar
Morlo, M. and Habersetzer, J. (1999). The Hyaenodontidae (Creodonta, Mammalia) from the lower Middle Eocene (MP 11) of Messel (Germany) with special remarks on new X-ray methods. Courier Forschungsinstitut Senckenberg, 216, 31–73.Google Scholar
Morlo, M. and Nagel, D. (2007). The carnivore guild of the Taatsiin Gol area: Hyaenodontidae (Creodonta), Carnivora, and Didymoconida from the Oligocene of Central Mongolia. Annalen des Naturhistorischen Museums Wien, 108A, 217–31.Google Scholar
Nagel, D. (2003). Carnivora from the middle Miocene hominoid locality of Çandir. Courier Forschungsinstitut Senckenberg, 240, 113–31.Google Scholar
Nagel, D. and Morlo, M. (2000). Middle Miocene carnivore guilds of Europe: 1. The south-eastern fauna of Çandir/Anatolia. Environments and Ecosystem Dynamics of the Eurasian Neogene (EEDEN), ‘State of the Art’ Workshop, Lyon, France, 16–18 November 2000, 46. Lyon: University of Lyon.Google Scholar
Nagel, D. and Morlo, M. (2003). Guild structure of the carnivorous mammals (Creodonta, Carnivora) from the Taatsiin Gol Area, Lower Oligocene of Central Mongolia. DEINSEA, 10, 419–29.Google Scholar
Nagel, D., Morlo, M. and Stefen, C. (2005). Sandelzhausen, a unique carnivore guild in the Middle Miocene (MN 5) of Europe. Berichte des Instituts für Erdwissenschaften, Karl-Franzens-Universität Graz, 10, 78–79.Google Scholar
Nagel, D., Stefen, C. and Morlo, M. (2009). The carnivoran community of Sandelzhausen, (Germany). Paläontologische Zeitschrift, 80/2, 107–11.Google Scholar
Phillips, R. B., Winchell, C. S. and Schmidt, R. H. (2007). Dietary overlap of an alien and native carnivore on San Clemente Island, California. Journal of Mammalogy, 88, 173–80.CrossRefGoogle Scholar
Polly, P. D. (1996). The skeleton of Gazinocyon vulpeculus gen. et comb. nov. and the cladistic relationships of Hyaenodontidae (Eutheria, Mammalia). Journal of Vertebrate Paleontology, 16, 303–19.CrossRefGoogle Scholar
Rose, K. D. (1990). Postcranial skeletal remains and adaptations in Early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. Geological Society of America, Special Paper, 243, 107–33.CrossRefGoogle Scholar
Stefen, C., Morlo, M. and Nagel, D. (2005). Carnivore guild structure in the Middle Miocene of the Mediterranean area. 12th Congress Regional Committee on Mediterranean Neogene Stratigraphy, 6–11 September 2005, Vienna. Program, Abstracts, Participants, 212. Vienna: Naturhistorisches Museum.Google Scholar
Taylor, M. E. (1974). The functional anatomy of the forelimb of some African Viverridae (Carnivora). Journal of Morphology, 143, 307–36.CrossRefGoogle Scholar
Taylor, M. E. (1976). The functional anatomy of the hindlimb of some African Viverridae (Carnivora). Journal of Morphology, 148, 227–53.CrossRefGoogle Scholar
Taylor, M. E. (1989). Locomotor adaptations by carnivores. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Comstock Publication Association, pp. 382–409.CrossRefGoogle Scholar
Thackeray, J. F. and Kieser, J. A. (1992). Body mass and carnassial length in modern and fossil carnivores. Annals of the Transvaal Museum, 35, 337–41.Google Scholar
Valverde, J. A. (1964). Remarque sur la structure et l'évolution des communautés terrestres. I. Structure d'une communauté. II. Rapports entre prédateurs et proies. Terre et Vie, 1964, 121–54.Google Scholar
Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–73.CrossRefGoogle Scholar
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 181–206.Google Scholar
Van Valkenburgh, B. (1992). Tracking ecology over geological time: evolution within guilds of vertebrates. Trends in Ecology and Evolution, 10, 71–76.CrossRefGoogle Scholar
Van Valkenburgh, B. (1999). Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences, 27, 463–93.CrossRefGoogle Scholar
Van Valkenburgh, B. (2008). Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 47, 147–63.CrossRefGoogle Scholar
Van Valkenburgh, B., Wang, X. and Damuth, J. (2004). Cope's rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–04.CrossRefGoogle ScholarPubMed
Viranta, S. and Andrews, P. (1995). Carnivore guild structure in the Paşalar Miocene fauna. Journal of Human Evolution, 28, 359–72.CrossRefGoogle Scholar
Wang, X. (1993). Transformation from plantigrady to digitigrady: functional morphology of locomotion in Hesperocyon (Canidae: Carnivora). American Museum Novitates, 3069, 1–23.Google Scholar
Wang, X., McKenna, M. C. and Dashzeveg, D. (2005). Amphicticeps and Amphicynodon (Arctoidea, Carnivora) from Hsanda Gol Formation, Central Mongolia and phylogeny of basal arctoids with comments on zoogeography. American Museum Novitates, 3483, 1–57.CrossRefGoogle Scholar
Werdelin, L. (1996). Carnivoran ecomorphology: a phylogenetic perspective. In Carnivore Behavior, Ecology, and Evolution, ed. L Gittleman, J.. Ithaca, NY: Cornell University Press, pp. 582–624.Google Scholar
Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Paleobiology, 31, 35–55.2.0.CO;2>CrossRefGoogle Scholar
Wittmer, L. M. and Rose, K. D. (1991). Biomechanics of the jaw apparatus of the gigantic Eocene bird Diatryma: implications for diet and mode of life. Paleobiology, 17, 95–120.CrossRefGoogle Scholar
Wolsan, M. (1993). Phylogeny and classification of early European Mustelida (Mammalia: Carnivora). Acta Theriologica, 38, 345–84.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×